1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#include <MultiParticleContainer.H>
#include <WarpX.H>
using namespace amrex;
void
RigidInjectedParticleContainer::ReadHeader (std::istream& is)
{
is >> charge >> mass;
WarpX::GotoNextLine(is);
int nlevs;
is >> nlevs;
WarpX::GotoNextLine(is);
AMREX_ASSERT(zinject_plane_levels.size() == 0);
AMREX_ASSERT(done_injecting.size() == 0);
for (int i = 0; i < nlevs; ++i)
{
int zinject_plane_tmp;
is >> zinject_plane_tmp;
zinject_plane_levels.push_back(zinject_plane_tmp);
WarpX::GotoNextLine(is);
}
for (int i = 0; i < nlevs; ++i)
{
int done_injecting_tmp;
is >> done_injecting_tmp;
done_injecting.push_back(done_injecting_tmp);
WarpX::GotoNextLine(is);
}
}
void
RigidInjectedParticleContainer::WriteHeader (std::ostream& os) const
{
// no need to write species_id
os << charge << " " << mass << "\n";
int nlevs = zinject_plane_levels.size();
os << nlevs << "\n";
for (int i = 0; i < nlevs; ++i)
{
os << zinject_plane_levels[i] << "\n";
}
for (int i = 0; i < nlevs; ++i)
{
os << done_injecting[i] << "\n";
}
}
void
WarpXParticleContainer::ReadHeader (std::istream& is)
{
is >> charge >> mass;
WarpX::GotoNextLine(is);
}
void
WarpXParticleContainer::WriteHeader (std::ostream& os) const
{
// no need to write species_id
os << charge << " " << mass << "\n";
}
void
MultiParticleContainer::Checkpoint (const std::string& dir) const
{
for (unsigned i = 0, n = species_names.size(); i < n; ++i) {
allcontainers[i]->Checkpoint(dir, species_names[i]);
}
}
void
MultiParticleContainer::WritePlotFile (const std::string& dir) const
{
for (unsigned i = 0, n = species_names.size(); i < n; ++i) {
auto& pc = allcontainers[i];
if (pc->plot_species) {
Vector<std::string> real_names;
Vector<std::string> int_names;
Vector<int> int_flags;
real_names.push_back("weight");
real_names.push_back("momentum_x");
real_names.push_back("momentum_y");
real_names.push_back("momentum_z");
real_names.push_back("Ex");
real_names.push_back("Ey");
real_names.push_back("Ez");
real_names.push_back("Bx");
real_names.push_back("By");
real_names.push_back("Bz");
#ifdef WARPX_DIM_RZ
real_names.push_back("theta");
#endif
if(pc->do_field_ionization){
int_names.push_back("ionization_level");
// int_flags specifies, for each integer attribs, whether it is
// dumped to plotfiles. So far, ionization_level is the only
// integer attribs, and it is automatically dumped to plotfiles
// when ionization is on.
int_flags.resize(1, 1);
}
#ifdef WARPX_QED
if(pc->m_do_qed){
real_names.push_back("tau");
}
#endif
// Convert momentum to SI
pc->ConvertUnits(ConvertDirection::WarpX_to_SI);
// real_names contains a list of all particle attributes.
// pc->plot_flags is 1 or 0, whether quantity is dumped or not.
pc->WritePlotFile(dir, species_names[i],
pc->plot_flags, int_flags,
real_names, int_names);
// Convert momentum back to WarpX units
pc->ConvertUnits(ConvertDirection::SI_to_WarpX);
}
}
}
void
MultiParticleContainer::Restart (const std::string& dir)
{
for (unsigned i = 0, n = species_names.size(); i < n; ++i) {
allcontainers[i]->Restart(dir, species_names[i]);
}
}
void
MultiParticleContainer::ReadHeader (std::istream& is)
{
for (auto& pc : allcontainers) {
pc->ReadHeader(is);
}
}
void
MultiParticleContainer::WriteHeader (std::ostream& os) const
{
for (const auto& pc : allcontainers) {
pc->WriteHeader(os);
}
}
// Particle momentum is defined as gamma*velocity, which is neither
// SI mass*gamma*velocity nor normalized gamma*velocity/c.
// This converts momentum to SI units (or vice-versa) to write SI data
// to file.
void
PhysicalParticleContainer::ConvertUnits(ConvertDirection convert_direction)
{
BL_PROFILE("PPC::ConvertUnits()");
// Compute conversion factor
Real factor = 1;
if (convert_direction == ConvertDirection::WarpX_to_SI){
factor = mass;
} else if (convert_direction == ConvertDirection::SI_to_WarpX){
factor = 1./mass;
}
const int nLevels = finestLevel();
for (int lev=0; lev<=nLevels; lev++){
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
{
// - momenta are stored as a struct of array, in `attribs`
auto& attribs = pti.GetAttribs();
ParticleReal* AMREX_RESTRICT ux = attribs[PIdx::ux].dataPtr();
ParticleReal* AMREX_RESTRICT uy = attribs[PIdx::uy].dataPtr();
ParticleReal* AMREX_RESTRICT uz = attribs[PIdx::uz].dataPtr();
// Loop over the particles and convert momentum
const long np = pti.numParticles();
ParallelFor( np,
[=] AMREX_GPU_DEVICE (long i) {
ux[i] *= factor;
uy[i] *= factor;
uz[i] *= factor;
}
);
}
}
}
|