1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/* Copyright 2023 Remi Lehe
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "ChargeOnEB.H"
#include "Diagnostics/ReducedDiags/ReducedDiags.H"
#include "Utils/TextMsg.H"
#include "Utils/WarpXConst.H"
#include "Utils/Parser/ParserUtils.H"
#include "WarpX.H"
#include <AMReX_GpuAtomic.H>
#include <AMReX_Config.H>
#include <AMReX_Geometry.H>
#include <AMReX_MultiFab.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>
#include <AMReX_REAL.H>
#include <algorithm>
#include <fstream>
#include <vector>
using namespace amrex;
// constructor
ChargeOnEB::ChargeOnEB (std::string rd_name)
: ReducedDiags{rd_name}
{
// Only 3D is working for now
#if !(defined WARPX_DIM_3D)
WARPX_ALWAYS_ASSERT_WITH_MESSAGE(false,
"ChargeOnEB reduced diagnostics only works in 3D");
#endif
#if !(defined AMREX_USE_EB)
WARPX_ALWAYS_ASSERT_WITH_MESSAGE(false,
"ChargeOnEB reduced diagnostics only works when compiling with EB support");
#endif
// resize data array
m_data.resize(1, 0.0_rt);
// Read optional weighting
std::string buf;
const amrex::ParmParse pp_rd_name(rd_name);
m_do_parser_weighting = pp_rd_name.query("weighting_function(x,y,z)", buf);
if (m_do_parser_weighting) {
std::string weighting_string;
utils::parser::Store_parserString(
pp_rd_name,"weighting_function(x,y,z)", weighting_string);
m_parser_weighting = std::make_unique<amrex::Parser>(
utils::parser::makeParser(weighting_string,{"x","y","z"}));
}
if (ParallelDescriptor::IOProcessor())
{
if ( m_write_header )
{
// open file
std::ofstream ofs{m_path + m_rd_name + "." + m_extension, std::ofstream::out};
// write header row
int c = 0;
ofs << "#";
ofs << "[" << c++ << "]step()";
ofs << m_sep;
ofs << "[" << c++ << "]time(s)";
ofs << m_sep;
ofs << "[" << c++ << "]Charge (C)";
ofs << std::endl;
// close file
ofs.close();
}
}
}
// end constructor
// function that computes the charge at the surface of the EB
void ChargeOnEB::ComputeDiags (const int step)
{
// Judge whether the diags should be done
if (!m_intervals.contains(step+1)) { return; }
#if ((defined WARPX_DIM_3D) && (defined AMREX_USE_EB))
// get a reference to WarpX instance
auto & warpx = WarpX::GetInstance();
// Only compute the integral on level 0
int const lev = 0;
// get MultiFab data at lev
const amrex::MultiFab & Ex = warpx.getEfield_fp(lev,0);
const amrex::MultiFab & Ey = warpx.getEfield_fp(lev,1);
const amrex::MultiFab & Ez = warpx.getEfield_fp(lev,2);
// get EB structures
amrex::EBFArrayBoxFactory const& eb_box_factory = warpx.fieldEBFactory(lev);
amrex::FabArray<amrex::EBCellFlagFab> const& eb_flag = eb_box_factory.getMultiEBCellFlagFab();
amrex::MultiCutFab const& eb_bnd_cent = eb_box_factory.getBndryCent();
amrex::MultiCutFab const& eb_bnd_normal = eb_box_factory.getBndryNormal();
amrex::Array<const amrex::MultiCutFab*,AMREX_SPACEDIM> eb_area_fraction = eb_box_factory.getAreaFrac();
// get surface integration element
const amrex::GpuArray<amrex::Real,AMREX_SPACEDIM> dx = warpx.Geom(lev).CellSizeArray();
amrex::Real const dSx = dx[1]*dx[2];
amrex::Real const dSy = dx[2]*dx[0];
amrex::Real const dSz = dx[0]*dx[1];
// Required for parser
const amrex::RealBox& real_box = warpx.Geom(lev).ProbDomain();
const bool do_parser_weighting = m_do_parser_weighting;
auto fun_weightingparser =
utils::parser::compileParser<3>(m_parser_weighting.get());
// Integral to calculate
amrex::Gpu::Buffer<amrex::Real> surface_integral({0.0_rt});
amrex::Real* surface_integral_pointer = surface_integral.data();
// Loop over boxes
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
for (amrex::MFIter mfi(Ex, TilingIfNotGPU()); mfi.isValid(); ++mfi)
{
const amrex::Box & box = mfi.tilebox( amrex::IntVect::TheCellVector() );
// Skip boxes that do not intersect with the embedded boundary
// (i.e. either fully covered or fully regular)
amrex::FabType fab_type = eb_flag[mfi].getType(box);
if (fab_type == amrex::FabType::regular) continue;
if (fab_type == amrex::FabType::covered) continue;
// Extract data for electric field
const amrex::Array4<const amrex::Real> & Ex_arr = Ex.array(mfi);
const amrex::Array4<const amrex::Real> & Ey_arr = Ey.array(mfi);
const amrex::Array4<const amrex::Real> & Ez_arr = Ez.array(mfi);
// Extract data for EB
auto const& eb_flag_arr = eb_flag.array(mfi);
const amrex::Array4<const amrex::Real> & eb_bnd_normal_arr = eb_bnd_normal.array(mfi);
const amrex::Array4<const amrex::Real> & eb_bnd_cent_arr = eb_bnd_cent.array(mfi);
const amrex::Array4<const amrex::Real> & dSx_fraction_arr = eb_area_fraction[0]->array(mfi);
const amrex::Array4<const amrex::Real> & dSy_fraction_arr = eb_area_fraction[1]->array(mfi);
const amrex::Array4<const amrex::Real> & dSz_fraction_arr = eb_area_fraction[2]->array(mfi);
amrex::ParallelFor( box,
[=] AMREX_GPU_DEVICE (int i, int j, int k) {
// Only cells that are partially covered do contribute to the integral
if (eb_flag_arr(i,j,k).isRegular() || eb_flag_arr(i,j,k).isCovered()) return;
// Find nodal point which is outside of the EB
// (eb_normal points towards the *interior* of the EB)
int const i_n = (eb_bnd_normal_arr(i,j,k,0) > 0)? i : i+1;
int const j_n = (eb_bnd_normal_arr(i,j,k,1) > 0)? j : j+1;
int const k_n = (eb_bnd_normal_arr(i,j,k,2) > 0)? k : k+1;
// Find cell-centered point which is outside of the EB
// (eb_normal points towards the *interior* of the EB)
int i_c = i;
if ((eb_bnd_normal_arr(i,j,k,0)>0) && (eb_bnd_cent_arr(i,j,k,0)<=0)) i_c -= 1;
if ((eb_bnd_normal_arr(i,j,k,0)<0) && (eb_bnd_cent_arr(i,j,k,0)>=0)) i_c += 1;
int j_c = j;
if ((eb_bnd_normal_arr(i,j,k,1)>0) && (eb_bnd_cent_arr(i,j,k,1)<=0)) j_c -= 1;
if ((eb_bnd_normal_arr(i,j,k,1)<0) && (eb_bnd_cent_arr(i,j,k,1)>=0)) j_c += 1;
int k_c = k;
if ((eb_bnd_normal_arr(i,j,k,2)>0) && (eb_bnd_cent_arr(i,j,k,2)<=0)) k_c -= 1;
if ((eb_bnd_normal_arr(i,j,k,2)<0) && (eb_bnd_cent_arr(i,j,k,2)>=0)) k_c += 1;
// Compute contribution to the surface integral $\int dS \cdot E$)
amrex::Real local_integral_contribution = 0;
local_integral_contribution += Ex_arr(i_c,j_n,k_n)*dSx*(dSx_fraction_arr(i+1,j,k)-dSx_fraction_arr(i,j,k));
local_integral_contribution += Ey_arr(i_n,j_c,k_n)*dSy*(dSy_fraction_arr(i,j+1,k)-dSy_fraction_arr(i,j,k));
local_integral_contribution += Ez_arr(i_n,j_n,k_c)*dSz*(dSz_fraction_arr(i,j,k+1)-dSz_fraction_arr(i,j,k));
// Add weighting if requested by user
if (do_parser_weighting) {
// Get the 3D position of the centroid of surface element
amrex::Real x = (i + 0.5_rt + eb_bnd_cent_arr(i,j,k,0))*dx[0] + real_box.lo(0);
amrex::Real y = (j + 0.5_rt + eb_bnd_cent_arr(i,j,k,1))*dx[1] + real_box.lo(1);
amrex::Real z = (k + 0.5_rt + eb_bnd_cent_arr(i,j,k,2))*dx[2] + real_box.lo(2);
// Apply weighting
local_integral_contribution *= fun_weightingparser(x, y, z);
}
// Given that only a tiny fraction of the cells have a non-zero contribution
// (the ones that intersect with the EB), it is not clear whether ReduceOpSum
// or AtomicAdd would be faster. However, the implementation with AtomicAdd is easier.
amrex::HostDevice::Atomic::Add( surface_integral_pointer, local_integral_contribution );
});
}
// Reduce across MPI ranks
surface_integral.copyToHost();
amrex::Real surface_integral_value = *(surface_integral.hostData());
amrex::ParallelDescriptor::ReduceRealSum( surface_integral_value );
// save data
m_data[0] = PhysConst::ep0 * surface_integral_value;
#endif
}
// end void ChargeOnEB::ComputeDiags
|