1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* Copyright 2019-2020 Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "FieldEnergy.H"
#include "Diagnostics/ReducedDiags/ReducedDiags.H"
#include "Utils/TextMsg.H"
#include "Utils/WarpXConst.H"
#include "WarpX.H"
#include <AMReX_Array4.H>
#include <AMReX_Config.H>
#include <AMReX_FArrayBox.H>
#include <AMReX_FabArray.H>
#include <AMReX_MFIter.H>
#include <AMReX_Geometry.H>
#include <AMReX_MultiFab.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>
#include <AMReX_REAL.H>
#include <algorithm>
#include <fstream>
#include <vector>
using namespace amrex;
// constructor
FieldEnergy::FieldEnergy (std::string rd_name)
: ReducedDiags{rd_name}
{
// read number of levels
int nLevel = 0;
const ParmParse pp_amr("amr");
pp_amr.query("max_level", nLevel);
nLevel += 1;
constexpr int noutputs = 3; // total energy, E-field energy and B-field energy
// resize data array
m_data.resize(noutputs*nLevel, 0.0_rt);
if (ParallelDescriptor::IOProcessor())
{
if ( m_write_header )
{
// open file
std::ofstream ofs{m_path + m_rd_name + "." + m_extension, std::ofstream::out};
// write header row
int c = 0;
ofs << "#";
ofs << "[" << c++ << "]step()";
ofs << m_sep;
ofs << "[" << c++ << "]time(s)";
for (int lev = 0; lev < nLevel; ++lev)
{
ofs << m_sep;
ofs << "[" << c++ << "]total_lev" + std::to_string(lev) + "(J)";
ofs << m_sep;
ofs << "[" << c++ << "]E_lev" + std::to_string(lev) + "(J)";
ofs << m_sep;
ofs << "[" << c++ << "]B_lev" + std::to_string(lev) + "(J)";
}
ofs << std::endl;
// close file
ofs.close();
}
}
}
// end constructor
// function that computes field energy
void FieldEnergy::ComputeDiags (int step)
{
// Judge if the diags should be done
if (!m_intervals.contains(step+1)) { return; }
// get a reference to WarpX instance
auto & warpx = WarpX::GetInstance();
// get number of level
const auto nLevel = warpx.finestLevel() + 1;
// loop over refinement levels
for (int lev = 0; lev < nLevel; ++lev)
{
// get MultiFab data at lev
const MultiFab & Ex = warpx.getEfield(lev,0);
const MultiFab & Ey = warpx.getEfield(lev,1);
const MultiFab & Ez = warpx.getEfield(lev,2);
const MultiFab & Bx = warpx.getBfield(lev,0);
const MultiFab & By = warpx.getBfield(lev,1);
const MultiFab & Bz = warpx.getBfield(lev,2);
// get cell size
Geometry const & geom = warpx.Geom(lev);
#if defined(WARPX_DIM_1D_Z)
auto dV = geom.CellSize(0);
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
auto dV = geom.CellSize(0) * geom.CellSize(1);
#elif defined(WARPX_DIM_3D)
auto dV = geom.CellSize(0) * geom.CellSize(1) * geom.CellSize(2);
#endif
#if defined(WARPX_DIM_RZ)
amrex::Real const tmpEx = ComputeNorm2RZ(Ex, lev);
amrex::Real const tmpEy = ComputeNorm2RZ(Ey, lev);
amrex::Real const tmpEz = ComputeNorm2RZ(Ez, lev);
amrex::Real const Es = tmpEx + tmpEy + tmpEz;
amrex::Real const tmpBx = ComputeNorm2RZ(Bx, lev);
amrex::Real const tmpBy = ComputeNorm2RZ(By, lev);
amrex::Real const tmpBz = ComputeNorm2RZ(Bz, lev);
amrex::Real const Bs = tmpBx + tmpBy + tmpBz;
#else
// compute E squared
Real const tmpEx = Ex.norm2(0,geom.periodicity());
Real const tmpEy = Ey.norm2(0,geom.periodicity());
Real const tmpEz = Ez.norm2(0,geom.periodicity());
Real const Es = tmpEx*tmpEx + tmpEy*tmpEy + tmpEz*tmpEz;
// compute B squared
Real const tmpBx = Bx.norm2(0,geom.periodicity());
Real const tmpBy = By.norm2(0,geom.periodicity());
Real const tmpBz = Bz.norm2(0,geom.periodicity());
Real const Bs = tmpBx*tmpBx + tmpBy*tmpBy + tmpBz*tmpBz;
#endif
constexpr int noutputs = 3; // total energy, E-field energy and B-field energy
constexpr int index_total = 0;
constexpr int index_E = 1;
constexpr int index_B = 2;
// save data
m_data[lev*noutputs+index_E] = 0.5_rt * Es * PhysConst::ep0 * dV;
m_data[lev*noutputs+index_B] = 0.5_rt * Bs / PhysConst::mu0 * dV;
m_data[lev*noutputs+index_total] = m_data[lev*noutputs+index_E] +
m_data[lev*noutputs+index_B];
}
// end loop over refinement levels
/* m_data now contains up-to-date values for:
* [total field energy at level 0,
* electric field energy at level 0,
* magnetic field energy at level 0,
* total field energy at level 1,
* electric field energy at level 1,
* magnetic field energy at level 1,
* ......] */
}
// end void FieldEnergy::ComputeDiags
// Function that computes the sum of the field squared in RZ
amrex::Real
FieldEnergy::ComputeNorm2RZ(const amrex::MultiFab& field, const int lev)
{
// get a reference to WarpX instance
auto & warpx = WarpX::GetInstance();
Geometry const & geom = warpx.Geom(lev);
const amrex::Real dr = geom.CellSize(0);
amrex::ReduceOps<amrex::ReduceOpSum> reduce_ops;
amrex::ReduceData<amrex::Real> reduce_data(reduce_ops);
using ReduceTuple = typename decltype(reduce_data)::Type;
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
for ( amrex::MFIter mfi(field, amrex::TilingIfNotGPU()); mfi.isValid(); ++mfi )
{
amrex::Array4<const amrex::Real> const& field_arr = field.array(mfi);
const amrex::Box tilebox = mfi.tilebox();
amrex::Box tb = convert(tilebox, field.ixType().toIntVect());
// Lower corner of tile box physical domain
const std::array<amrex::Real, 3>& xyzmin = WarpX::LowerCorner(tilebox, lev, 0._rt);
const Dim3 lo = lbound(tilebox);
const Dim3 hi = ubound(tilebox);
const Real rmin = xyzmin[0] + (tb.ixType().nodeCentered(0) ? 0._rt : 0.5_rt*dr);
const int irmin = lo.x;
const int irmax = hi.x;
int const ncomp = field.nComp();
for (int idir=0 ; idir < AMREX_SPACEDIM ; idir++) {
if (WarpX::field_boundary_hi[idir] == FieldBoundaryType::Periodic) {
// For periodic boundaries, do not include the data in the nodes
// on the upper edge of the domain
tb.enclosedCells(idir);
}
}
reduce_ops.eval(tb, ncomp, reduce_data,
[=] AMREX_GPU_DEVICE (int i, int j, int k, int n) -> ReduceTuple
{
const amrex::Real r = rmin + (i - irmin)*dr;
amrex::Real volume_factor = r;
if (r == 0._rt) {
volume_factor = dr/8._rt;
} else if (rmin == 0._rt && i == irmax) {
volume_factor = r/2._rt - dr/8._rt;
}
const amrex::Real theta_integral = (n == 0 ? 2._rt : 1._rt);
return theta_integral*field_arr(i,j,k,n)*field_arr(i,j,k,n)*volume_factor;
});
}
const amrex::Real field_sum = amrex::get<0>(reduce_data.value());
const amrex::Real result = MathConst::pi*field_sum;
return result;
}
// end Real FieldEnergy::ComputeNorm2RZ
|