aboutsummaryrefslogtreecommitdiff
path: root/Source/Diagnostics/ReducedDiags/ParticleHistogram.cpp
blob: 13dee37a8df5e88801ac098cf761515483f1f32f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/* Copyright 2019-2021 Yinjian Zhao, Axel Huebl
 *
 * This file is part of WarpX.
 *
 * License: BSD-3-Clause-LBNL
 */

#include "ParticleHistogram.H"

#include "Diagnostics/ReducedDiags/ReducedDiags.H"
#include "Particles/MultiParticleContainer.H"
#include "Particles/Pusher/GetAndSetPosition.H"
#include "Particles/WarpXParticleContainer.H"
#include "Utils/Parser/ParserUtils.H"
#include "Utils/TextMsg.H"
#include "Utils/WarpXConst.H"
#include "WarpX.H"

#include <AMReX.H>
#include <AMReX_Config.H>
#include <AMReX_Extension.H>
#include <AMReX_GpuAtomic.H>
#include <AMReX_GpuContainers.H>
#include <AMReX_GpuControl.H>
#include <AMReX_GpuLaunch.H>
#include <AMReX_GpuQualifiers.H>
#include <AMReX_Math.H>
#include <AMReX_PODVector.H>
#include <AMReX_ParIter.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>
#include <AMReX_REAL.H>

#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <ostream>
#include <vector>

using namespace amrex;

struct NormalizationType {
    enum {
        no_normalization = 0,
        unity_particle_weight,
        max_to_unity,
        area_to_unity
    };
};

// constructor
ParticleHistogram::ParticleHistogram (std::string rd_name)
: ReducedDiags{rd_name}
{
    ParmParse pp_rd_name(rd_name);

    // read species
    std::string selected_species_name;
    pp_rd_name.get("species",selected_species_name);

    // read bin parameters
    utils::parser::getWithParser(pp_rd_name, "bin_number",m_bin_num);
    utils::parser::getWithParser(pp_rd_name, "bin_max",   m_bin_max);
    utils::parser::getWithParser(pp_rd_name, "bin_min",   m_bin_min);
    m_bin_size = (m_bin_max - m_bin_min) / m_bin_num;

    // read histogram function
    std::string function_string = "";
    utils::parser::Store_parserString(pp_rd_name,"histogram_function(t,x,y,z,ux,uy,uz)",
                       function_string);
    m_parser = std::make_unique<amrex::Parser>(
        utils::parser::makeParser(function_string,{"t","x","y","z","ux","uy","uz"}));

    // read normalization type
    std::string norm_string = "default";
    pp_rd_name.query("normalization",norm_string);

    // set normalization type
    if ( norm_string == "default" ) {
        m_norm = NormalizationType::no_normalization;
    } else if ( norm_string == "unity_particle_weight" ) {
        m_norm = NormalizationType::unity_particle_weight;
    } else if ( norm_string == "max_to_unity" ) {
        m_norm = NormalizationType::max_to_unity;
    } else if ( norm_string == "area_to_unity" ) {
        m_norm = NormalizationType::area_to_unity;
    } else {
        WARPX_ABORT_WITH_MESSAGE(
            "Unknown ParticleHistogram normalization type.");
    }

    // get MultiParticleContainer class object
    const auto & mypc = WarpX::GetInstance().GetPartContainer();
    // get species names (std::vector<std::string>)
    auto const species_names = mypc.GetSpeciesNames();
    // select species
    for ( int i = 0; i < mypc.nSpecies(); ++i )
    {
        if ( selected_species_name == species_names[i] ){
            m_selected_species_id = i;
        }
    }
    // if m_selected_species_id is not modified
    if ( m_selected_species_id == -1 ){
        WARPX_ABORT_WITH_MESSAGE(
            "Unknown species for ParticleHistogram reduced diagnostic.");
    }

    // Read optional filter
    std::string buf;
    m_do_parser_filter = pp_rd_name.query("filter_function(t,x,y,z,ux,uy,uz)", buf);
    if (m_do_parser_filter) {
        std::string filter_string = "";
        utils::parser::Store_parserString(
            pp_rd_name,"filter_function(t,x,y,z,ux,uy,uz)", filter_string);
        m_parser_filter = std::make_unique<amrex::Parser>(
            utils::parser::makeParser(filter_string,{"t","x","y","z","ux","uy","uz"}));
    }

    // resize data array
    m_data.resize(m_bin_num,0.0_rt);

    if (ParallelDescriptor::IOProcessor())
    {
        if ( m_IsNotRestart )
        {
            // open file
            std::ofstream ofs{m_path + m_rd_name + "." + m_extension, std::ofstream::out};
            // write header row
            int c = 0;
            ofs << "#";
            ofs << "[" << c++ << "]step()";
            ofs << m_sep;
            ofs << "[" << c++ << "]time(s)";
            for (int i = 0; i < m_bin_num; ++i)
            {
                ofs << m_sep;
                ofs << "[" << c++ << "]";
                Real b = m_bin_min + m_bin_size*(Real(i)+0.5_rt);
                ofs << "bin" + std::to_string(1+i)
                             + "=" + std::to_string(b) + "()";
            }
            ofs << std::endl;
            // close file
            ofs.close();
        }
    }
}
// end constructor

// function that computes the histogram
void ParticleHistogram::ComputeDiags (int step)
{
    // Judge if the diags should be done
    if (!m_intervals.contains(step+1)) return;

    // get a reference to WarpX instance
    auto & warpx = WarpX::GetInstance();

    // get time at level 0
    auto const t = warpx.gett_new(0);

    // get MultiParticleContainer class object
    const auto & mypc = warpx.GetPartContainer();

    // get WarpXParticleContainer class object
    auto & myspc = mypc.GetParticleContainer(m_selected_species_id);

    // get parser
    auto fun_partparser =
        utils::parser::compileParser<m_nvars>(m_parser.get());

    // get filter parser
    auto fun_filterparser =
        utils::parser::compileParser<m_nvars>(m_parser_filter.get());

    // declare local variables
    auto const num_bins = m_bin_num;
    Real const bin_min  = m_bin_min;
    Real const bin_size = m_bin_size;
    const bool is_unity_particle_weight =
        (m_norm == NormalizationType::unity_particle_weight) ? true : false;

    bool const do_parser_filter = m_do_parser_filter;

    // zero-out old data on the host
    std::fill(m_data.begin(), m_data.end(), amrex::Real(0.0));
    amrex::Gpu::DeviceVector< amrex::Real > d_data( m_data.size(), 0.0 );
    amrex::Real* const AMREX_RESTRICT dptr_data = d_data.dataPtr();

    int const nlevs = std::max(0, myspc.finestLevel()+1);
    for (int lev = 0; lev < nlevs; ++lev) {
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
        {
            for (WarpXParIter pti(myspc, lev); pti.isValid(); ++pti)
            {
                auto const GetPosition = GetParticlePosition(pti);

                auto & attribs = pti.GetAttribs();
                ParticleReal* const AMREX_RESTRICT d_w = attribs[PIdx::w].dataPtr();
                ParticleReal* const AMREX_RESTRICT d_ux = attribs[PIdx::ux].dataPtr();
                ParticleReal* const AMREX_RESTRICT d_uy = attribs[PIdx::uy].dataPtr();
                ParticleReal* const AMREX_RESTRICT d_uz = attribs[PIdx::uz].dataPtr();

                long const np = pti.numParticles();

                //Flag particles that need to be copied if they cross the z_slice
                amrex::ParallelFor(np,
                   [=] AMREX_GPU_DEVICE(int i)
                {
                    amrex::ParticleReal x, y, z;
                    GetPosition(i, x, y, z);
                    auto const w  = (amrex::Real)d_w[i];
                    auto const ux = d_ux[i] / PhysConst::c;
                    auto const uy = d_uy[i] / PhysConst::c;
                    auto const uz = d_uz[i] / PhysConst::c;

                    // don't count a particle if it is filtered out
                    if (do_parser_filter)
                        if (!fun_filterparser(t, x, y, z, ux, uy, uz))
                            return;
                    // continue function if particle is not filtered out
                    auto const f = fun_partparser(t, x, y, z, ux, uy, uz);
                    // determine particle bin
                    int const bin = int(Math::floor((f-bin_min)/bin_size));
                    if ( bin<0 || bin>=num_bins ) return; // discard if out-of-range

                    // add particle to histogram bin
                    //! @todo performance: on CPU, we are probably faster by
                    //        letting each thread compute its own histogram and
                    //        then we reduce the histograms after the loop
                    if ( is_unity_particle_weight ) {
                        amrex::HostDevice::Atomic::Add(&dptr_data[bin], 1.0_rt);
                    } else {
                        amrex::HostDevice::Atomic::Add(&dptr_data[bin], w);
                    }
                });
            }
        }
    }

    // blocking copy from device to host
    amrex::Gpu::copy(amrex::Gpu::deviceToHost,
        d_data.begin(), d_data.end(), m_data.begin());

    // reduced sum over mpi ranks
    ParallelDescriptor::ReduceRealSum
        (m_data.data(), m_data.size(), ParallelDescriptor::IOProcessorNumber());

    // normalize the maximum value to be one
    if ( m_norm == NormalizationType::max_to_unity )
    {
        Real f_max = 0.0_rt;
        for ( int i = 0; i < m_bin_num; ++i )
        {
            if ( m_data[i] > f_max ) f_max = m_data[i];
        }
        for ( int i = 0; i < m_bin_num; ++i )
        {
            if ( f_max > std::numeric_limits<Real>::min() ) m_data[i] /= f_max;
        }
        return;
    }

    // normalize the area (integral) to be one
    if ( m_norm == NormalizationType::area_to_unity )
    {
        Real f_area = 0.0_rt;
        for ( int i = 0; i < m_bin_num; ++i )
        {
            f_area += m_data[i] * m_bin_size;
        }
        for ( int i = 0; i < m_bin_num; ++i )
        {
            if ( f_area > std::numeric_limits<Real>::min() ) m_data[i] /= f_area;
        }
        return;
    }
}
// end void ParticleHistogram::ComputeDiags