1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
|
/* Copyright 2019-2021 Axel Huebl, Junmin Gu
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "WarpXOpenPMD.H"
#include "Diagnostics/ParticleDiag/ParticleDiag.H"
#include "FieldIO.H"
#include "Particles/Filter/FilterFunctors.H"
#include "Utils/RelativeCellPosition.H"
#include "Utils/WarpXAlgorithmSelection.H"
#include "Utils/WarpXProfilerWrapper.H"
#include "Utils/WarpXUtil.H"
#include "WarpX.H"
#include <AMReX.H>
#include <AMReX_ArrayOfStructs.H>
#include <AMReX_BLassert.H>
#include <AMReX_Box.H>
#include <AMReX_Config.H>
#include <AMReX_FArrayBox.H>
#include <AMReX_FabArray.H>
#include <AMReX_GpuQualifiers.H>
#include <AMReX_IntVect.H>
#include <AMReX_MFIter.H>
#include <AMReX_MultiFab.H>
#include <AMReX_PODVector.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParallelReduce.H>
#include <AMReX_Particle.H>
#include <AMReX_Particles.H>
#include <AMReX_Periodicity.H>
#include <AMReX_StructOfArrays.H>
#include <algorithm>
#include <cctype>
#include <cstdint>
#include <iostream>
#include <map>
#include <set>
#include <string>
#include <tuple>
#include <utility>
namespace detail
{
#ifdef WARPX_USE_OPENPMD
# ifdef _WIN32
/** Replace all occurrences of a string
*
* Same as openPMD::auxiliary::replace_all (not public in <=0.14.2)
*
* @param[in] s input string
* @param[in] target string to be replaced
* @param[in] replacement string to be replaced with
* @return modified value of s
*/
inline std::string
replace_all(std::string s,
std::string const& target,
std::string const& replacement)
{
std::string::size_type pos = 0;
auto tsize = target.size();
assert(tsize > 0);
auto rsize = replacement.size();
while (true)
{
pos = s.find(target, pos);
if (pos == std::string::npos)
break;
s.replace(pos, tsize, replacement);
// Allow replacing recursively, but only if
// the next replaced substring overlaps with
// some parts of the original word.
// This avoids loops.
pos += rsize - std::min(tsize - 1, rsize);
}
s.shrink_to_fit();
return s;
}
# endif
/** \brief Convert a snake_case string to a camelCase one.
*
* WarpX uses snake_case internally for some component
* names, but OpenPMD assumes "_" indicates vector or
* tensor fields.
*
* @return camelCase version of input
*/
inline std::string
snakeToCamel (const std::string& snake_string)
{
std::string camelString = snake_string;
int n = camelString.length();
for (int x = 0; x < n; x++)
{
if (x == 0)
{
std::transform(camelString.begin(), camelString.begin()+1, camelString.begin(),
[](unsigned char c){ return std::tolower(c); });
}
if (camelString[x] == '_')
{
std::string tempString = camelString.substr(x + 1, 1);
std::transform(tempString.begin(), tempString.end(), tempString.begin(),
[](unsigned char c){ return std::toupper(c); });
camelString.erase(x, 2);
camelString.insert(x, tempString);
}
}
return camelString;
}
/** Create the option string
*
* @return JSON option string for openPMD::Series
*/
inline std::string
getSeriesOptions (std::string const & operator_type,
std::map< std::string, std::string > const & operator_parameters)
{
std::string options;
std::string op_parameters;
for (const auto& kv : operator_parameters) {
if (!op_parameters.empty()) op_parameters.append(",\n");
op_parameters.append(std::string(12, ' ')) /* just pretty alignment */
.append("\"").append(kv.first).append("\": ") /* key */
.append("\"").append(kv.second).append("\""); /* value (as string) */
}
if (!operator_type.empty()) {
options = R"END(
{
"adios2": {
"dataset": {
"operators": [
{
"type": ")END";
options += operator_type + "\"";
}
if (!operator_type.empty() && !op_parameters.empty()) {
options += R"END(
,"parameters": {
)END";
options += op_parameters + "}";
}
if (!operator_type.empty())
options += R"END(
}
]
}
}
}
)END";
if (options.empty()) options = "{}";
return options;
}
/** Unclutter a real_names to openPMD record
*
* @param fullName name as in real_names variable
* @return pair of openPMD record and component name
*/
inline std::pair< std::string, std::string >
name2openPMD ( std::string const& fullName )
{
std::string record_name = fullName;
std::string component_name = openPMD::RecordComponent::SCALAR;
// we use "_" as separator in names to group vector records
std::size_t startComp = fullName.find_last_of("_");
if( startComp != std::string::npos ) { // non-scalar
record_name = fullName.substr(0, startComp);
component_name = fullName.substr(startComp + 1u);
}
return make_pair(record_name, component_name);
}
/** Return the component labels for particle positions
*/
inline std::vector< std::string >
getParticlePositionComponentLabels ()
{
using vs = std::vector< std::string >;
#if defined(WARPX_DIM_1D_Z)
vs const positionComponents{"z"};
#elif defined(WARPX_DIM_XZ)
vs const positionComponents{"x", "z"};
#elif defined(WARPX_DIM_RZ)
// note: although we internally store particle positions
// for AMReX in r,z and a theta attribute, we
// actually need them for algorithms (e.g. push)
// and I/O in Cartesian.
// Other attributes like momentum are consequently
// stored in x,y,z internally.
vs const positionComponents{"x", "y", "z"};
#elif defined(WARPX_DIM_3D)
vs const positionComponents{"x", "y", "z"};
#else
# error Unknown WarpX dimensionality.
#endif
return positionComponents;
}
/** Return the axis (index) names of a mesh
*
* This will be returned in C order. This is inverse of the Fortran order
* of the index labels for the AMReX FArrayBox.
*/
inline std::vector< std::string >
getFieldAxisLabels ()
{
using vs = std::vector< std::string >;
// Fortran order of the index labels for the AMReX FArrayBox
#if defined(WARPX_DIM_1D_Z)
vs const axisLabels{"z"};
#elif defined(WARPX_DIM_XZ)
vs const axisLabels{"x", "z"};
#elif defined(WARPX_DIM_RZ)
// if we are start to write individual modes
//vs const axisLabels{"r", "z"};
// if we just write reconstructed 2D fields at theta=0
vs const axisLabels{"x", "z"};
#elif defined(WARPX_DIM_3D)
vs const axisLabels{"x", "y", "z"};
#else
# error Unknown WarpX dimensionality.
#endif
// revert to C order (fastest varying index last)
return {axisLabels.rbegin(), axisLabels.rend()};
}
/** Return the component names of a mesh
*/
inline std::vector< std::string >
getFieldComponentLabels ()
{
using vs = std::vector< std::string >;
#if defined(WARPX_DIM_RZ)
// if we are start to write individual modes
//vs const fieldComponents{"r", "z"};
// if we just write reconstructed fields at theta=0
vs const fieldComponents{"x", "y", "z"};
#else
// note: 1D3V and 2D3V simulations still have 3 components for the fields
vs const fieldComponents{"x", "y", "z"};
#endif
return fieldComponents;
}
/** Get the openPMD physical dimensionality of a record
*
* @param record_name name of the openPMD record
* @return map with base quantities and power scaling
*/
inline std::map< openPMD::UnitDimension, double >
getUnitDimension ( std::string const & record_name )
{
if( record_name == "position" ) return {
{openPMD::UnitDimension::L, 1.}
};
else if( record_name == "positionOffset" ) return {
{openPMD::UnitDimension::L, 1.}
};
else if( record_name == "momentum" ) return {
{openPMD::UnitDimension::L, 1.},
{openPMD::UnitDimension::M, 1.},
{openPMD::UnitDimension::T, -1.}
};
else if( record_name == "charge" ) return {
{openPMD::UnitDimension::T, 1.},
{openPMD::UnitDimension::I, 1.}
};
else if( record_name == "mass" ) return {
{openPMD::UnitDimension::M, 1.}
};
else if( record_name == "E" ) return {
{openPMD::UnitDimension::L, 1.},
{openPMD::UnitDimension::M, 1.},
{openPMD::UnitDimension::T, -3.},
{openPMD::UnitDimension::I, -1.},
};
else if( record_name == "B" ) return {
{openPMD::UnitDimension::M, 1.},
{openPMD::UnitDimension::I, -1.},
{openPMD::UnitDimension::T, -2.}
};
else return {};
}
/** \brief For a given field that is to be written to an openPMD file,
* set the metadata that indicates the physical unit.
*/
inline void
setOpenPMDUnit ( openPMD::Mesh mesh, const std::string field_name )
{
if (field_name[0] == 'E'){ // Electric field
mesh.setUnitDimension({
{openPMD::UnitDimension::L, 1},
{openPMD::UnitDimension::M, 1},
{openPMD::UnitDimension::T, -3},
{openPMD::UnitDimension::I, -1},
});
} else if (field_name[0] == 'B'){ // Magnetic field
mesh.setUnitDimension({
{openPMD::UnitDimension::M, 1},
{openPMD::UnitDimension::I, -1},
{openPMD::UnitDimension::T, -2}
});
} else if (field_name[0] == 'j'){ // current
mesh.setUnitDimension({
{openPMD::UnitDimension::L, -2},
{openPMD::UnitDimension::I, 1},
});
} else if (field_name.substr(0,3) == "rho"){ // charge density
mesh.setUnitDimension({
{openPMD::UnitDimension::L, -3},
{openPMD::UnitDimension::I, 1},
{openPMD::UnitDimension::T, 1},
});
}
}
#endif // WARPX_USE_OPENPMD
} // namespace detail
#ifdef WARPX_USE_OPENPMD
WarpXOpenPMDPlot::WarpXOpenPMDPlot (
openPMD::IterationEncoding ie,
std::string openPMDFileType,
std::string operator_type,
std::map< std::string, std::string > operator_parameters,
std::vector<bool> fieldPMLdirections)
:m_Series(nullptr),
m_Encoding(ie),
m_OpenPMDFileType(std::move(openPMDFileType)),
m_fieldPMLdirections(std::move(fieldPMLdirections))
{
// pick first available backend if default is chosen
if( m_OpenPMDFileType == "default" )
#if openPMD_HAVE_ADIOS2==1
m_OpenPMDFileType = "bp";
#elif openPMD_HAVE_ADIOS1==1
m_OpenPMDFileType = "bp";
#elif openPMD_HAVE_HDF5==1
m_OpenPMDFileType = "h5";
#else
m_OpenPMDFileType = "json";
#endif
m_OpenPMDoptions = detail::getSeriesOptions(operator_type, operator_parameters);
}
WarpXOpenPMDPlot::~WarpXOpenPMDPlot ()
{
if( m_Series )
{
m_Series->flush();
m_Series.reset( nullptr );
}
}
std::string
WarpXOpenPMDPlot::GetFileName (std::string& filepath)
{
filepath.append("/");
// transform paths for Windows
#ifdef _WIN32
filepath = detail::replace_all(filepath, "/", "\\");
#endif
std::string filename = "openpmd";
//
// OpenPMD supports timestepped names
//
if (m_Encoding == openPMD::IterationEncoding::fileBased) {
std::string fileSuffix = std::string("_%0") + std::to_string(m_file_min_digits) + std::string("T");
filename = filename.append(fileSuffix);
}
filename.append(".").append(m_OpenPMDFileType);
filepath.append(filename);
return filename;
}
void WarpXOpenPMDPlot::SetStep (int ts, const std::string& dirPrefix, int file_min_digits,
bool isBTD)
{
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(ts >= 0 , "openPMD iterations are unsigned");
m_dirPrefix = dirPrefix;
m_file_min_digits = file_min_digits;
if( ! isBTD ) {
if (m_CurrentStep >= ts) {
// note m_Series is reset in Init(), so using m_Series->iterations.contains(ts) is only able to check the
// last written step in m_Series's life time, but not other earlier written steps by other m_Series
WarpX::GetInstance().RecordWarning("Diagnostics",
" Warning from openPMD writer: Already written iteration:"
+ std::to_string(ts)
);
}
}
m_CurrentStep = ts;
Init(openPMD::Access::CREATE, isBTD);
}
void WarpXOpenPMDPlot::CloseStep (bool isBTD, bool isLastBTDFlush)
{
// default close is true
bool callClose = true;
// close BTD file only when isLastBTDFlush is true
if (isBTD and !isLastBTDFlush) callClose = false;
if (callClose) {
if (m_Series) {
GetIteration(m_CurrentStep, isBTD).close();
}
// create a little helper file for ParaView 5.9+
if (amrex::ParallelDescriptor::IOProcessor())
{
// see Init()
std::string filepath = m_dirPrefix;
std::string const filename = GetFileName(filepath);
std::ofstream pv_helper_file(m_dirPrefix + "/paraview.pmd");
pv_helper_file << filename << std::endl;
pv_helper_file.close();
}
}
}
void
WarpXOpenPMDPlot::Init (openPMD::Access access, bool isBTD)
{
if( isBTD && m_Series != nullptr )
return; // already open for this snapshot (aka timestep in lab frame)
// either for the next ts file,
// or init a single file for all ts
std::string filepath = m_dirPrefix;
GetFileName(filepath);
// close a previously open series before creating a new one
// see ADIOS1 limitation: https://github.com/openPMD/openPMD-api/pull/686
if ( m_Encoding == openPMD::IterationEncoding::fileBased )
m_Series = nullptr;
else if ( m_Series != nullptr )
return;
if (amrex::ParallelDescriptor::NProcs() > 1) {
#if defined(AMREX_USE_MPI)
m_Series = std::make_unique<openPMD::Series>(
filepath, access,
amrex::ParallelDescriptor::Communicator(),
m_OpenPMDoptions
);
m_MPISize = amrex::ParallelDescriptor::NProcs();
m_MPIRank = amrex::ParallelDescriptor::MyProc();
#else
amrex::Abort("openPMD-api not built with MPI support!");
#endif
} else {
m_Series = std::make_unique<openPMD::Series>(filepath, access, m_OpenPMDoptions);
m_MPISize = 1;
m_MPIRank = 1;
}
m_Series->setIterationEncoding( m_Encoding );
// input file / simulation setup author
if( !WarpX::authors.empty())
m_Series->setAuthor( WarpX::authors );
// more natural naming for PIC
m_Series->setMeshesPath( "fields" );
// conform to ED-PIC extension of openPMD
uint32_t const openPMD_ED_PIC = 1u;
m_Series->setOpenPMDextension( openPMD_ED_PIC );
// meta info
m_Series->setSoftware( "WarpX", WarpX::Version() );
}
void
WarpXOpenPMDPlot::WriteOpenPMDParticles (const amrex::Vector<ParticleDiag>& particle_diags,
const bool isBTD, const amrex::Vector<int>& totalParticlesFlushedAlready)
{
WARPX_PROFILE("WarpXOpenPMDPlot::WriteOpenPMDParticles()");
for (unsigned i = 0, n = particle_diags.size(); i < n; ++i) {
WarpXParticleContainer* pc = particle_diags[i].getParticleContainer();
auto tmp = pc->make_alike<amrex::PinnedArenaAllocator>();
// names of amrex::Real and int particle attributes in SoA data
amrex::Vector<std::string> real_names;
amrex::Vector<std::string> int_names;
amrex::Vector<int> int_flags;
amrex::Vector<int> real_flags;
// see openPMD ED-PIC extension for namings
// note: an underscore separates the record name from its component
// for non-scalar records
real_names.push_back("weighting");
real_names.push_back("momentum_x");
real_names.push_back("momentum_y");
real_names.push_back("momentum_z");
#ifdef WARPX_DIM_RZ
real_names.push_back("theta");
#endif
// get the names of the real comps
real_names.resize(pc->NumRealComps());
auto runtime_rnames = pc->getParticleRuntimeComps();
for (auto const& x : runtime_rnames)
{
real_names[x.second+PIdx::nattribs] = detail::snakeToCamel(x.first);
}
// plot any "extra" fields by default
real_flags = particle_diags[i].plot_flags;
real_flags.resize(pc->NumRealComps(), 1);
// and the names
int_names.resize(pc->NumIntComps());
auto runtime_inames = pc->getParticleRuntimeiComps();
for (auto const& x : runtime_inames)
{
int_names[x.second+0] = detail::snakeToCamel(x.first);
}
// plot by default
int_flags.resize(pc->NumIntComps(), 1);
pc->ConvertUnits(ConvertDirection::WarpX_to_SI);
RandomFilter const random_filter(particle_diags[i].m_do_random_filter,
particle_diags[i].m_random_fraction);
UniformFilter const uniform_filter(particle_diags[i].m_do_uniform_filter,
particle_diags[i].m_uniform_stride);
ParserFilter parser_filter(particle_diags[i].m_do_parser_filter,
compileParser<ParticleDiag::m_nvars>
(particle_diags[i].m_particle_filter_parser.get()),
pc->getMass());
parser_filter.m_units = InputUnits::SI;
GeometryFilter const geometry_filter(particle_diags[i].m_do_geom_filter,
particle_diags[i].m_diag_domain);
if (! isBTD) {
using SrcData = WarpXParticleContainer::ParticleTileType::ConstParticleTileDataType;
tmp.copyParticles(*pc,
[=] AMREX_GPU_HOST_DEVICE (const SrcData& src, int ip, const amrex::RandomEngine& engine)
{
const SuperParticleType& p = src.getSuperParticle(ip);
return random_filter(p, engine) * uniform_filter(p, engine)
* parser_filter(p, engine) * geometry_filter(p, engine);
}, true);
} else if (isBTD) {
PinnedMemoryParticleContainer* pinned_pc = particle_diags[i].getPinnedParticleContainer();
tmp.SetParticleGeometry(0,pinned_pc->Geom(0));
tmp.SetParticleBoxArray(0,pinned_pc->ParticleBoxArray(0));
tmp.SetParticleDistributionMap(0, pinned_pc->ParticleDistributionMap(0));
tmp.copyParticles(*pinned_pc);
}
// real_names contains a list of all real particle attributes.
// real_flags is 1 or 0, whether quantity is dumped or not.
{
if (isBTD) {
DumpToFile(&tmp,
particle_diags[i].getSpeciesName(),
m_CurrentStep,
real_flags,
int_flags,
real_names, int_names,
pc->getCharge(), pc->getMass(),
isBTD, totalParticlesFlushedAlready[i]
);
} else {
DumpToFile(&tmp,
particle_diags[i].getSpeciesName(),
m_CurrentStep,
real_flags,
int_flags,
real_names, int_names,
pc->getCharge(), pc->getMass(),
isBTD, 0
);
}
}
// Convert momentum back to WarpX units
pc->ConvertUnits(ConvertDirection::SI_to_WarpX);
}
}
void
WarpXOpenPMDPlot::DumpToFile (ParticleContainer* pc,
const std::string& name,
int iteration,
const amrex::Vector<int>& write_real_comp,
const amrex::Vector<int>& write_int_comp,
const amrex::Vector<std::string>& real_comp_names,
const amrex::Vector<std::string>& int_comp_names,
amrex::ParticleReal const charge,
amrex::ParticleReal const mass, const bool isBTD,
int ParticleFlushOffset)
{
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_Series != nullptr, "openPMD: series must be initialized");
WarpXParticleCounter counter(pc);
if (counter.GetTotalNumParticles() == 0) return;
openPMD::Iteration currIteration = GetIteration(iteration, isBTD);
openPMD::ParticleSpecies currSpecies = currIteration.particles[name];
// meta data for ED-PIC extension
currSpecies.setAttribute( "particleShape", double( WarpX::noz ) );
// TODO allow this per direction in the openPMD standard, ED-PIC extension?
currSpecies.setAttribute( "particleShapes", [](){
return std::vector< double >{
#if AMREX_SPACEDIM>=2
double(WarpX::nox),
#endif
#if defined(WARPX_DIM_3D)
double(WarpX::noy),
#endif
double(WarpX::noz)
};
}() );
currSpecies.setAttribute( "particlePush", [](){
switch( WarpX::particle_pusher_algo ) {
case ParticlePusherAlgo::Boris : return "Boris";
case ParticlePusherAlgo::Vay : return "Vay";
case ParticlePusherAlgo::HigueraCary : return "HigueraCary";
default: return "other";
}
}() );
currSpecies.setAttribute( "particleInterpolation", [](){
switch( WarpX::field_gathering_algo ) {
case GatheringAlgo::EnergyConserving : return "energyConserving";
case GatheringAlgo::MomentumConserving : return "momentumConserving";
default: return "other";
}
}() );
currSpecies.setAttribute( "particleSmoothing", "none" );
currSpecies.setAttribute( "currentDeposition", [](){
switch( WarpX::current_deposition_algo ) {
case CurrentDepositionAlgo::Esirkepov : return "Esirkepov";
case CurrentDepositionAlgo::Vay : return "Vay";
default: return "directMorseNielson";
}
}() );
//
// define positions & offsets
//
const unsigned long long NewParticleVectorSize = counter.GetTotalNumParticles() + ParticleFlushOffset;
m_doParticleSetUp = false;
if (counter.GetTotalNumParticles() > 0 and ParticleFlushOffset == 0) {
// This will trigger meta-data flush for particles the first-time non-zero number of particles are flushed.
m_doParticleSetUp = true;
}
SetupPos(currSpecies, NewParticleVectorSize, charge, mass, isBTD);
SetupRealProperties(currSpecies, write_real_comp, real_comp_names, write_int_comp, int_comp_names, NewParticleVectorSize, isBTD);
// open files from all processors, in case some will not contribute below
m_Series->flush();
for (auto currentLevel = 0; currentLevel <= pc->finestLevel(); currentLevel++)
{
uint64_t offset = static_cast<uint64_t>( counter.m_ParticleOffsetAtRank[currentLevel] );
// For BTD, the offset include the number of particles already flushed
if (isBTD) offset += ParticleFlushOffset;
for (ParticleIter pti(*pc, currentLevel); pti.isValid(); ++pti) {
auto const numParticleOnTile = pti.numParticles();
uint64_t const numParticleOnTile64 = static_cast<uint64_t>( numParticleOnTile );
// Do not call storeChunk() with zero-sized particle tiles:
// https://github.com/openPMD/openPMD-api/issues/1147
if (numParticleOnTile == 0) continue;
// get position and particle ID from aos
// note: this implementation iterates the AoS 4x...
// if we flush late as we do now, we can also copy out the data in one go
const auto& aos = pti.GetArrayOfStructs(); // size = numParticlesOnTile
{
// Save positions
auto const positionComponents = detail::getParticlePositionComponentLabels();
#if defined(WARPX_DIM_RZ)
{
std::shared_ptr<amrex::ParticleReal> z(
new amrex::ParticleReal[numParticleOnTile],
[](amrex::ParticleReal const *p) { delete[] p; }
);
for (auto i = 0; i < numParticleOnTile; i++)
z.get()[i] = aos[i].pos(1); // {0: "r", 1: "z"}
std::string const positionComponent = "z";
currSpecies["position"]["z"].storeChunk(z, {offset}, {numParticleOnTile64});
}
// reconstruct x and y from polar coordinates r, theta
auto const& soa = pti.GetStructOfArrays();
amrex::ParticleReal const* theta = soa.GetRealData(PIdx::theta).dataPtr();
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(theta != nullptr, "openPMD: invalid theta pointer.");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(int(soa.GetRealData(PIdx::theta).size()) == numParticleOnTile,
"openPMD: theta and tile size do not match");
{
std::shared_ptr< amrex::ParticleReal > x(
new amrex::ParticleReal[numParticleOnTile],
[](amrex::ParticleReal const *p){ delete[] p; }
);
std::shared_ptr< amrex::ParticleReal > y(
new amrex::ParticleReal[numParticleOnTile],
[](amrex::ParticleReal const *p){ delete[] p; }
);
for (auto i=0; i<numParticleOnTile; i++) {
auto const r = aos[i].pos(0); // {0: "r", 1: "z"}
x.get()[i] = r * std::cos(theta[i]);
y.get()[i] = r * std::sin(theta[i]);
}
currSpecies["position"]["x"].storeChunk(x, {offset}, {numParticleOnTile64});
currSpecies["position"]["y"].storeChunk(y, {offset}, {numParticleOnTile64});
}
#else
for (auto currDim = 0; currDim < AMREX_SPACEDIM; currDim++) {
std::shared_ptr< amrex::ParticleReal > curr(
new amrex::ParticleReal[numParticleOnTile],
[](amrex::ParticleReal const *p){ delete[] p; }
);
for (auto i=0; i<numParticleOnTile; i++) {
curr.get()[i] = aos[i].pos(currDim);
}
std::string const positionComponent = positionComponents[currDim];
currSpecies["position"][positionComponent].storeChunk(curr, {offset}, {numParticleOnTile64});
}
#endif
// save particle ID after converting it to a globally unique ID
std::shared_ptr< uint64_t > ids(
new uint64_t[numParticleOnTile],
[](uint64_t const *p){ delete[] p; }
);
for (auto i=0; i<numParticleOnTile; i++) {
ids.get()[i] = WarpXUtilIO::localIDtoGlobal( aos[i].id(), aos[i].cpu() );
}
auto const scalar = openPMD::RecordComponent::SCALAR;
currSpecies["id"][scalar].storeChunk(ids, {offset}, {numParticleOnTile64});
}
// save "extra" particle properties in AoS and SoA
SaveRealProperty(pti,
currSpecies,
offset,
write_real_comp, real_comp_names,
write_int_comp, int_comp_names);
offset += numParticleOnTile64;
}
}
m_Series->flush();
}
void
WarpXOpenPMDPlot::SetupRealProperties (openPMD::ParticleSpecies& currSpecies,
const amrex::Vector<int>& write_real_comp,
const amrex::Vector<std::string>& real_comp_names,
const amrex::Vector<int>& write_int_comp,
const amrex::Vector<std::string>& int_comp_names,
const unsigned long long np, bool const isBTD) const
{
std::string options = "{}";
if (isBTD) options = "{ \"resizable\": true }";
auto dtype_real = openPMD::Dataset(openPMD::determineDatatype<amrex::ParticleReal>(), {np}, options);
auto dtype_int = openPMD::Dataset(openPMD::determineDatatype<int>(), {np}, options);
//
// the beam/input3d showed write_real_comp.size() = 16 while only 10 real comp names
// so using the min to be safe.
//
auto const getComponentRecord = [&currSpecies](std::string const comp_name) {
// handle scalar and non-scalar records by name
const auto [record_name, component_name] = detail::name2openPMD(comp_name);
return currSpecies[record_name][component_name];
};
auto const real_counter = std::min(write_real_comp.size(), real_comp_names.size());
for (int i = 0; i < real_counter; ++i) {
if (write_real_comp[i]) {
getComponentRecord(real_comp_names[i]).resetDataset(dtype_real);
}
}
auto const int_counter = std::min(write_int_comp.size(), int_comp_names.size());
for (int i = 0; i < int_counter; ++i) {
if (write_int_comp[i]) {
getComponentRecord(int_comp_names[i]).resetDataset(dtype_int);
}
}
// attributes need to be set only the first time BTD flush is called for a snapshot
if (isBTD and m_doParticleSetUp == false) return;
std::set< std::string > addedRecords; // add meta-data per record only once
for (auto idx=0; idx<m_NumSoARealAttributes; idx++) {
auto ii = m_NumAoSRealAttributes + idx; // jump over AoS names
if (write_real_comp[ii]) {
// handle scalar and non-scalar records by name
const auto [record_name, component_name] = detail::name2openPMD(real_comp_names[ii]);
auto currRecord = currSpecies[record_name];
// meta data for ED-PIC extension
[[maybe_unused]] const auto [_, newRecord] = addedRecords.insert(record_name);
if( newRecord ) {
currRecord.setUnitDimension( detail::getUnitDimension(record_name) );
if( record_name == "weighting" )
currRecord.setAttribute( "macroWeighted", 1u );
else
currRecord.setAttribute( "macroWeighted", 0u );
if( record_name == "momentum" || record_name == "weighting" )
currRecord.setAttribute( "weightingPower", 1.0 );
else
currRecord.setAttribute( "weightingPower", 0.0 );
}
}
}
for (auto idx=0; idx<int_counter; idx++) {
auto ii = m_NumAoSIntAttributes + idx; // jump over AoS names
if (write_int_comp[ii]) {
// handle scalar and non-scalar records by name
const auto [record_name, component_name] = detail::name2openPMD(int_comp_names[ii]);
auto currRecord = currSpecies[record_name];
// meta data for ED-PIC extension
[[maybe_unused]] const auto [_, newRecord] = addedRecords.insert(record_name);
if( newRecord ) {
currRecord.setUnitDimension( detail::getUnitDimension(record_name) );
currRecord.setAttribute( "macroWeighted", 0u );
if( record_name == "momentum" || record_name == "weighting" )
currRecord.setAttribute( "weightingPower", 1.0 );
else
currRecord.setAttribute( "weightingPower", 0.0 );
}
}
}
}
void
WarpXOpenPMDPlot::SaveRealProperty (ParticleIter& pti,
openPMD::ParticleSpecies& currSpecies,
unsigned long long const offset,
amrex::Vector<int> const& write_real_comp,
amrex::Vector<std::string> const& real_comp_names,
amrex::Vector<int> const& write_int_comp,
amrex::Vector<std::string> const& int_comp_names) const
{
int numOutputReal = 0;
int const totalRealAttrs = m_NumAoSRealAttributes + m_NumSoARealAttributes;
for( int i = 0; i < totalRealAttrs; ++i )
if( write_real_comp[i] )
++numOutputReal;
auto const numParticleOnTile = pti.numParticles();
uint64_t const numParticleOnTile64 = static_cast<uint64_t>( numParticleOnTile );
auto const& aos = pti.GetArrayOfStructs(); // size = numParticlesOnTile
auto const& soa = pti.GetStructOfArrays();
// first we concatinate the AoS into contiguous arrays
{
for( auto idx=0; idx<m_NumAoSRealAttributes; idx++ ) {
if( write_real_comp[idx] ) {
// handle scalar and non-scalar records by name
const auto [record_name, component_name] = detail::name2openPMD(real_comp_names[idx]);
auto currRecord = currSpecies[record_name];
auto currRecordComp = currRecord[component_name];
std::shared_ptr< amrex::ParticleReal > d(
new amrex::ParticleReal[numParticleOnTile],
[](amrex::ParticleReal const *p){ delete[] p; }
);
for( auto kk=0; kk<numParticleOnTile; kk++ )
d.get()[kk] = aos[kk].rdata(idx);
currRecordComp.storeChunk(d,
{offset}, {numParticleOnTile64});
}
}
}
auto const getComponentRecord = [&currSpecies](std::string const comp_name) {
// handle scalar and non-scalar records by name
const auto [record_name, component_name] = detail::name2openPMD(comp_name);
return currSpecies[record_name][component_name];
};
// here we the save the SoA properties (real)
{
auto const real_counter = std::min(write_real_comp.size(), real_comp_names.size());
for (auto idx=0; idx<real_counter; idx++) {
auto ii = m_NumAoSRealAttributes + idx;
if (write_real_comp[ii]) {
getComponentRecord(real_comp_names[ii]).storeChunk(openPMD::shareRaw(soa.GetRealData(idx)),
{offset}, {numParticleOnTile64});
}
}
}
// and now SoA int properties
{
auto const int_counter = std::min(write_int_comp.size(), int_comp_names.size());
for (auto idx=0; idx<int_counter; idx++) {
auto ii = m_NumAoSIntAttributes + idx; // jump over AoS names
if (write_int_comp[ii]) {
getComponentRecord(int_comp_names[ii]).storeChunk(openPMD::shareRaw(soa.GetIntData(idx)),
{offset}, {numParticleOnTile64});
}
}
}
}
void
WarpXOpenPMDPlot::SetupPos (
openPMD::ParticleSpecies& currSpecies,
const unsigned long long& np,
amrex::ParticleReal const charge,
amrex::ParticleReal const mass,
bool const isBTD)
{
std::string options = "{}";
if (isBTD) options = "{ \"resizable\": true }";
auto realType= openPMD::Dataset(openPMD::determineDatatype<amrex::ParticleReal>(), {np}, options);
auto idType = openPMD::Dataset(openPMD::determineDatatype< uint64_t >(), {np}, options);
auto const positionComponents = detail::getParticlePositionComponentLabels();
for( auto const& comp : positionComponents ) {
currSpecies["positionOffset"][comp].resetDataset( realType );
currSpecies["position"][comp].resetDataset( realType );
}
auto const scalar = openPMD::RecordComponent::SCALAR;
currSpecies["id"][scalar].resetDataset( idType );
currSpecies["charge"][scalar].resetDataset( realType );
currSpecies["mass"][scalar].resetDataset( realType );
if (isBTD and m_doParticleSetUp == false) return;
// make constant
for( auto const& comp : positionComponents ) {
currSpecies["positionOffset"][comp].makeConstant( 0. );
}
currSpecies["charge"][scalar].makeConstant( charge );
currSpecies["mass"][scalar].makeConstant( mass );
// meta data
currSpecies["position"].setUnitDimension( detail::getUnitDimension("position") );
currSpecies["positionOffset"].setUnitDimension( detail::getUnitDimension("positionOffset") );
currSpecies["charge"].setUnitDimension( detail::getUnitDimension("charge") );
currSpecies["mass"].setUnitDimension( detail::getUnitDimension("mass") );
// meta data for ED-PIC extension
currSpecies["position"].setAttribute( "macroWeighted", 0u );
currSpecies["position"].setAttribute( "weightingPower", 0.0 );
currSpecies["positionOffset"].setAttribute( "macroWeighted", 0u );
currSpecies["positionOffset"].setAttribute( "weightingPower", 0.0 );
currSpecies["id"].setAttribute( "macroWeighted", 0u );
currSpecies["id"].setAttribute( "weightingPower", 0.0 );
currSpecies["charge"].setAttribute( "macroWeighted", 0u );
currSpecies["charge"].setAttribute( "weightingPower", 1.0 );
currSpecies["mass"].setAttribute( "macroWeighted", 0u );
currSpecies["mass"].setAttribute( "weightingPower", 1.0 );
}
/*
* Set up parameter for mesh container using the geometry (from level 0)
*
* @param [IN] meshes: openPMD-api mesh container
* @param [IN] full_geom: field geometry
*
*/
void
WarpXOpenPMDPlot::SetupFields ( openPMD::Container< openPMD::Mesh >& meshes,
amrex::Geometry& full_geom ) const
{
// meta data for ED-PIC extension
auto const period = full_geom.periodicity(); // TODO double-check: is this the proper global bound or of some level?
std::vector<std::string> fieldBoundary(6, "reflecting");
std::vector<std::string> particleBoundary(6, "absorbing");
fieldBoundary.resize(AMREX_SPACEDIM * 2);
particleBoundary.resize(AMREX_SPACEDIM * 2);
for (auto i = 0u; i < fieldBoundary.size() / 2u; ++i)
if (m_fieldPMLdirections.at(i))
fieldBoundary.at(i) = "open";
for (auto i = 0u; i < fieldBoundary.size() / 2u; ++i)
if (period.isPeriodic(i)) {
fieldBoundary.at(2u * i) = "periodic";
fieldBoundary.at(2u * i + 1u) = "periodic";
particleBoundary.at(2u * i) = "periodic";
particleBoundary.at(2u * i + 1u) = "periodic";
}
meshes.setAttribute("fieldSolver", []() {
switch (WarpX::maxwell_solver_id) {
case MaxwellSolverAlgo::Yee :
return "Yee";
case MaxwellSolverAlgo::CKC :
return "CK";
case MaxwellSolverAlgo::PSATD :
return "PSATD";
default:
return "other";
}
}());
meshes.setAttribute("fieldBoundary", fieldBoundary);
meshes.setAttribute("particleBoundary", particleBoundary);
meshes.setAttribute("currentSmoothing", []() {
if (WarpX::use_filter) return "Binomial";
else return "none";
}());
if (WarpX::use_filter)
meshes.setAttribute("currentSmoothingParameters", []() {
std::stringstream ss;
ss << "period=1;compensator=false";
#if (AMREX_SPACEDIM >= 2)
ss << ";numPasses_x=" << WarpX::filter_npass_each_dir[0];
#endif
#if defined(WARPX_DIM_3D)
ss << ";numPasses_y=" << WarpX::filter_npass_each_dir[1];
ss << ";numPasses_z=" << WarpX::filter_npass_each_dir[2];
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
ss << ";numPasses_z=" << WarpX::filter_npass_each_dir[1];
#elif defined(WARPX_DIM_1D_Z)
ss << ";numPasses_z=" << WarpX::filter_npass_each_dir[0];
#endif
std::string currentSmoothingParameters = ss.str();
return currentSmoothingParameters;
}());
meshes.setAttribute("chargeCorrection", []() {
if (WarpX::do_dive_cleaning) return "hyperbolic"; // TODO or "spectral" or something? double-check
else return "none";
}());
if (WarpX::do_dive_cleaning)
meshes.setAttribute("chargeCorrectionParameters", "period=1");
}
/*
* Setup component properties for a field mesh
* @param [IN]: mesh a mesh field
* @param [IN]: full_geom geometry for the mesh
* @param [IN]: mesh_comp a component for the mesh
*/
void
WarpXOpenPMDPlot::SetupMeshComp (openPMD::Mesh& mesh,
amrex::Geometry& full_geom,
openPMD::MeshRecordComponent& mesh_comp) const
{
amrex::Box const & global_box = full_geom.Domain();
auto const global_size = getReversedVec(global_box.size());
// - Grid spacing
std::vector<double> const grid_spacing = getReversedVec(full_geom.CellSize());
// - Global offset
std::vector<double> const global_offset = getReversedVec(full_geom.ProbLo());
// - AxisLabels
std::vector<std::string> axis_labels = detail::getFieldAxisLabels();
// Prepare the type of dataset that will be written
openPMD::Datatype const datatype = openPMD::determineDatatype<amrex::Real>();
auto const dataset = openPMD::Dataset(datatype, global_size);
mesh.setDataOrder(openPMD::Mesh::DataOrder::C);
mesh.setAxisLabels(axis_labels);
mesh.setGridSpacing(grid_spacing);
mesh.setGridGlobalOffset(global_offset);
mesh.setAttribute("fieldSmoothing", "none");
mesh_comp.resetDataset(dataset);
}
/*
* Get component names of a field for openPMD-api book-keeping
* Level is reflected as _lvl<meshLevel>
*
* @param meshLevel [IN]: level of mesh
* @param varname [IN]: name from WarpX
* @param field_name [OUT]: field name for openPMD-api output
* @param comp_name [OUT]: comp name for openPMD-api output
*/
void
WarpXOpenPMDPlot::GetMeshCompNames (int meshLevel,
const std::string& varname,
std::string& field_name,
std::string& comp_name) const
{
if (varname.size() >= 2u ) {
std::string const varname_1st = varname.substr(0u, 1u); // 1st character
std::string const varname_2nd = varname.substr(1u, 1u); // 2nd character
// Check if this field is a vector. If so, then extract the field name
std::vector< std::string > const vector_fields = {"E", "B", "j"};
std::vector< std::string > const field_components = detail::getFieldComponentLabels();
for( std::string const& field : vector_fields ) {
for( std::string const& component : field_components ) {
if( field.compare( varname_1st ) == 0 &&
component.compare( varname_2nd ) == 0 )
{
field_name = varname_1st + varname.substr(2); // Strip component
comp_name = varname_2nd;
}
}
}
}
if ( 0 == meshLevel )
return;
field_name += std::string("_lvl").append(std::to_string(meshLevel));
}
/*
* Write Field with all mesh levels
*
*/
void
WarpXOpenPMDPlot::WriteOpenPMDFieldsAll ( //const std::string& filename,
const std::vector<std::string>& varnames,
const amrex::Vector<amrex::MultiFab>& mf,
amrex::Vector<amrex::Geometry>& geom,
const int iteration,
const double time, bool isBTD,
const amrex::Geometry& full_BTD_snapshot ) const
{
//This is AMReX's tiny profiler. Possibly will apply it later
WARPX_PROFILE("WarpXOpenPMDPlot::WriteOpenPMDFields()");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_Series != nullptr, "openPMD series must be initialized");
// is this either a regular write (true) or the first write in a
// backtransformed diagnostic (BTD):
bool const first_write_to_iteration = ! m_Series->iterations.contains( iteration );
// meta data
openPMD::Iteration series_iteration = GetIteration(m_CurrentStep, isBTD);
// collective open
series_iteration.open();
auto meshes = series_iteration.meshes;
if (first_write_to_iteration) {
// lets see whether full_geom varies from geom[0] xgeom[1]
series_iteration.setTime( time );
}
for (int i=0; i<geom.size(); i++) {
amrex::Geometry full_geom = geom[i];
if( isBTD )
full_geom = full_BTD_snapshot;
// setup is called once. So it uses property "period" from first
// geometry for <all> field levels.
if ( (0 == i) && first_write_to_iteration )
SetupFields(meshes, full_geom);
amrex::Box const & global_box = full_geom.Domain();
auto const global_size = getReversedVec(global_box.size());
int const ncomp = mf[i].nComp();
for ( int icomp=0; icomp<ncomp; icomp++ ) {
std::string const & varname = varnames[icomp];
// assume fields are scalar unless they match the following match of known vector fields
std::string field_name = varname;
std::string comp_name = openPMD::MeshRecordComponent::SCALAR;
GetMeshCompNames( i, varname, field_name, comp_name );
auto mesh = meshes[field_name];
auto mesh_comp = mesh[comp_name];
if ( first_write_to_iteration )
{
SetupMeshComp( mesh, full_geom, mesh_comp );
detail::setOpenPMDUnit( mesh, field_name );
auto relative_cell_pos = utils::getRelativeCellPosition(mf[i]); // AMReX Fortran index order
std::reverse( relative_cell_pos.begin(), relative_cell_pos.end() ); // now in C order
mesh_comp.setPosition( relative_cell_pos );
}
// Loop through the multifab, and store each box as a chunk,
// in the openPMD file.
for( amrex::MFIter mfi(mf[i]); mfi.isValid(); ++mfi )
{
amrex::FArrayBox const& fab = mf[i][mfi];
amrex::Box const& local_box = fab.box();
// Determine the offset and size of this chunk
amrex::IntVect const box_offset = local_box.smallEnd() - global_box.smallEnd();
auto const chunk_offset = getReversedVec( box_offset );
auto const chunk_size = getReversedVec( local_box.size() );
amrex::Real const * local_data = fab.dataPtr( icomp );
mesh_comp.storeChunk( openPMD::shareRaw(local_data),
chunk_offset, chunk_size );
}
} // icomp loop
// Flush data to disk after looping over all components
m_Series->flush();
} // levels loop (i)
}
#endif // WARPX_USE_OPENPMD
//
//
//
WarpXParticleCounter::WarpXParticleCounter (ParticleContainer* pc)
{
m_MPISize = amrex::ParallelDescriptor::NProcs();
m_MPIRank = amrex::ParallelDescriptor::MyProc();
m_ParticleCounterByLevel.resize(pc->finestLevel()+1);
m_ParticleOffsetAtRank.resize(pc->finestLevel()+1);
m_ParticleSizeAtRank.resize(pc->finestLevel()+1);
for (auto currentLevel = 0; currentLevel <= pc->finestLevel(); currentLevel++)
{
long numParticles = 0; // numParticles in this processor
for (ParticleIter pti(*pc, currentLevel); pti.isValid(); ++pti) {
auto numParticleOnTile = pti.numParticles();
numParticles += numParticleOnTile;
}
unsigned long long offset=0; // offset of this level
unsigned long long sum=0; // numParticles in this level (sum from all processors)
GetParticleOffsetOfProcessor(numParticles, offset, sum);
m_ParticleCounterByLevel[currentLevel] = sum;
m_ParticleOffsetAtRank[currentLevel] = offset;
m_ParticleSizeAtRank[currentLevel] = numParticles;
// adjust offset, it should be numbered after particles from previous levels
for (auto lv=0; lv<currentLevel; lv++)
m_ParticleOffsetAtRank[currentLevel] += m_ParticleCounterByLevel[lv];
m_Total += sum;
}
}
// get the offset in the overall particle id collection
//
// note: this is a MPI-collective operation
//
// input: num of particles of from each processor
//
// output:
// offset within <all> the particles in the comm
// sum of all particles in the comm
//
void
WarpXParticleCounter::GetParticleOffsetOfProcessor (
const long& numParticles,
unsigned long long& offset,
unsigned long long& sum
) const
{
offset = 0;
#if defined(AMREX_USE_MPI)
std::vector<long> result(m_MPISize, 0);
amrex::ParallelGather::Gather (numParticles, result.data(), -1, amrex::ParallelDescriptor::Communicator());
sum = 0;
int const num_results = result.size();
for (int i=0; i<num_results; i++) {
sum += result[i];
if (i<m_MPIRank)
offset += result[i];
}
#else
sum = numParticles;
#endif
}
|