1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/* Copyright 2021
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "Utils/WarpXAlgorithmSelection.H"
#include "FiniteDifferenceSolver.H"
#include "Utils/WarpXConst.H"
#include <AMReX_Gpu.H>
#ifdef WARPX_DIM_RZ
# include "FiniteDifferenceAlgorithms/CylindricalYeeAlgorithm.H"
#endif
using namespace amrex;
/**
* \brief Update the B field at the boundary, using the Silver-Mueller condition
*/
void FiniteDifferenceSolver::ApplySilverMuellerBoundary (
std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Bfield,
amrex::Box domain_box,
amrex::Real const dt ) {
// Ensure that we are using the Yee solver
if (m_fdtd_algo != MaxwellSolverAlgo::Yee) {
amrex::Abort("The Silver-Mueller boundary conditions can only be used with the Yee solver.");
}
// Ensure that we are using the cells the domain
domain_box.enclosedCells();
#ifdef WARPX_DIM_RZ
// Calculate relevant coefficients
amrex::Real const cdt = PhysConst::c*dt;
amrex::Real const cdt_over_dr = cdt*m_h_stencil_coefs_r[0];
amrex::Real const coef1_r = (1._rt - cdt_over_dr)/(1._rt + cdt_over_dr);
amrex::Real const coef2_r = 2._rt*cdt_over_dr/(1._rt + cdt_over_dr) / PhysConst::c;
amrex::Real const coef3_r = cdt/(1._rt + cdt_over_dr) / PhysConst::c;
amrex::Real const cdt_over_dz = cdt*m_h_stencil_coefs_z[0];
amrex::Real const coef1_z = (1._rt - cdt_over_dz)/(1._rt + cdt_over_dz);
amrex::Real const coef2_z = 2._rt*cdt_over_dz/(1._rt + cdt_over_dz) / PhysConst::c;
// Extract stencil coefficients
Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr();
int const n_coefs_z = m_h_stencil_coefs_z.size();
// Extract cylindrical specific parameters
Real const dr = m_dr;
int const nmodes = m_nmodes;
Real const rmin = m_rmin;
// tiling is usually set by TilingIfNotGPU()
// but here, we set it to false because of potential race condition,
// since we grow the tiles by one guard cell after creating them.
for ( MFIter mfi(*Efield[0], false); mfi.isValid(); ++mfi ) {
// Extract field data for this grid/tile
Array4<Real> const& Er = Efield[0]->array(mfi);
Array4<Real> const& Et = Efield[1]->array(mfi);
Array4<Real> const& Ez = Efield[2]->array(mfi);
Array4<Real> const& Br = Bfield[0]->array(mfi);
Array4<Real> const& Bt = Bfield[1]->array(mfi);
Array4<Real> const& Bz = Bfield[2]->array(mfi);
// Extract tileboxes for which to loop
Box tbr = mfi.tilebox(Bfield[0]->ixType().toIntVect());
Box tbt = mfi.tilebox(Bfield[1]->ixType().toIntVect());
Box tbz = mfi.tilebox(Bfield[2]->ixType().toIntVect());
// We will modify the first (i.e. innermost) guard cell
// (if it is outside of the physical domain)
// Thus, the tileboxes here are grown by 1 guard cell
tbr.grow(1);
tbt.grow(1);
tbz.grow(1);
// Loop over the cells
amrex::ParallelFor(tbr, tbt, tbz,
[=] AMREX_GPU_DEVICE (int i, int j, int /*k*/){
// At the +z boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 ){
for (int m=0; m<2*nmodes-1; m++)
Br(i,j,0,m) = coef1_z*Br(i,j,0,m) - coef2_z*Et(i,j,0,m);
}
// At the -z boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 ){
for (int m=0; m<2*nmodes-1; m++)
Br(i,j,0,m) = coef1_z*Br(i,j,0,m) + coef2_z*Et(i,j+1,0,m);
}
},
[=] AMREX_GPU_DEVICE (int i, int j, int /*k*/){
// At the +z boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 ){
for (int m=0; m<2*nmodes-1; m++)
Bt(i,j,0,m) = coef1_z*Bt(i,j,0,m) + coef2_z*Er(i,j,0,m);
}
// At the -z boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 ){
for (int m=0; m<2*nmodes-1; m++)
Bt(i,j,0,m) = coef1_z*Bt(i,j,0,m) - coef2_z*Er(i,j+1,0,m);
}
// At the +r boundary (innermost guard cell)
if ( i==domain_box.bigEnd(0)+1 ){
// Mode 0
Bt(i,j,0,0) = coef1_r*Bt(i,j,0,0) - coef2_r*Ez(i,j,0,0)
+ coef3_r*CylindricalYeeAlgorithm::UpwardDz(Er, coefs_z, n_coefs_z, i, j, 0, 0);
for (int m=1; m<nmodes; m++) { // Higher-order modes
// Real part
Bt(i,j,0,2*m-1) = coef1_r*Bt(i,j,0,2*m-1) - coef2_r*Ez(i,j,0,2*m-1)
+ coef3_r*CylindricalYeeAlgorithm::UpwardDz(Er, coefs_z, n_coefs_z, i, j, 0, 2*m-1);
// Imaginary part
Bt(i,j,0,2*m) = coef1_r*Bt(i,j,0,2*m) - coef2_r*Ez(i,j,0,2*m)
+ coef3_r*CylindricalYeeAlgorithm::UpwardDz(Er, coefs_z, n_coefs_z, i, j, 0, 2*m);
}
}
},
[=] AMREX_GPU_DEVICE (int i, int j, int /*k*/){
// At the +r boundary (innermost guard cell)
if ( i==domain_box.bigEnd(0)+1 ){
Real const r = rmin + (i + 0.5_rt)*dr; // r on nodal point (Bz is cell-centered in r)
// Mode 0
Bz(i,j,0,0) = coef1_r*Bz(i,j,0,0) + coef2_r*Et(i,j,0,0) - coef3_r*Et(i,j,0,0)/r;
for (int m=1; m<nmodes; m++) { // Higher-order modes
// Real part
Bz(i,j,0,2*m-1) = coef1_r*Bz(i,j,0,2*m-1) + coef2_r*Et(i,j,0,2*m-1)
- coef3_r/r*(Et(i,j,0,2*m-1) - m*Er(i,j,0,2*m));
// Imaginary part
Bz(i,j,0,2*m) = coef1_r*Bz(i,j,0,2*m) + coef2_r*Et(i,j,0,2*m)
- coef3_r/r*(Et(i,j,0,2*m) + m*Er(i,j,0,2*m-1));
}
}
}
);
}
#else
// Calculate relevant coefficients
amrex::Real const cdt_over_dx = PhysConst::c*dt*m_h_stencil_coefs_x[0];
amrex::Real const coef1_x = (1._rt - cdt_over_dx)/(1._rt + cdt_over_dx);
amrex::Real const coef2_x = 2._rt*cdt_over_dx/(1._rt + cdt_over_dx) / PhysConst::c;
#ifdef WARPX_DIM_3D
amrex::Real const cdt_over_dy = PhysConst::c*dt*m_h_stencil_coefs_y[0];
amrex::Real const coef1_y = (1._rt - cdt_over_dy)/(1._rt + cdt_over_dy);
amrex::Real const coef2_y = 2._rt*cdt_over_dy/(1._rt + cdt_over_dy) / PhysConst::c;
#endif
amrex::Real const cdt_over_dz = PhysConst::c*dt*m_h_stencil_coefs_z[0];
amrex::Real const coef1_z = (1._rt - cdt_over_dz)/(1._rt + cdt_over_dz);
amrex::Real const coef2_z = 2._rt*cdt_over_dz/(1._rt + cdt_over_dz) / PhysConst::c;
// Loop through the grids, and over the tiles within each grid
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
// tiling is usually set by TilingIfNotGPU()
// but here, we set it to false because of potential race condition,
// since we grow the tiles by one guard cell after creating them.
for ( MFIter mfi(*Efield[0], false); mfi.isValid(); ++mfi ) {
// Extract field data for this grid/tile
Array4<Real> const& Ex = Efield[0]->array(mfi);
Array4<Real> const& Ey = Efield[1]->array(mfi);
Array4<Real> const& Ez = Efield[2]->array(mfi);
Array4<Real> const& Bx = Bfield[0]->array(mfi);
Array4<Real> const& By = Bfield[1]->array(mfi);
Array4<Real> const& Bz = Bfield[2]->array(mfi);
// Extract the tileboxes for which to loop
Box tbx = mfi.tilebox(Bfield[0]->ixType().toIntVect());
Box tby = mfi.tilebox(Bfield[1]->ixType().toIntVect());
Box tbz = mfi.tilebox(Bfield[2]->ixType().toIntVect());
// We will modify the first (i.e. innermost) guard cell
// (if it is outside of the physical domain)
// Thus, the tileboxes here are grown by 1 guard cell
tbx.grow(1);
tby.grow(1);
tbz.grow(1);
// Loop over cells
amrex::ParallelFor(tbx, tby, tbz,
// Apply Boundary condition to Bx
[=] AMREX_GPU_DEVICE (int i, int j, int k){
#ifdef WARPX_DIM_3D
// At the +y boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 )
Bx(i,j,k) = coef1_y * Bx(i,j,k) + coef2_y * Ez(i,j,k);
// At the -y boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 )
Bx(i,j,k) = coef1_y * Bx(i,j,k) - coef2_y * Ez(i,j+1,k);
// At the +z boundary (innermost guard cell)
if ( k==domain_box.bigEnd(2)+1 )
Bx(i,j,k) = coef1_z * Bx(i,j,k) - coef2_z * Ey(i,j,k);
// At the -z boundary (innermost guard cell)
if ( k==domain_box.smallEnd(2)-1 )
Bx(i,j,k) = coef1_z * Bx(i,j,k) + coef2_z * Ey(i,j,k+1);
#elif WARPX_DIM_XZ
// At the +z boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 )
Bx(i,j,k) = coef1_z * Bx(i,j,k) - coef2_z * Ey(i,j,k);
// At the -z boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 )
Bx(i,j,k) = coef1_z * Bx(i,j,k) + coef2_z * Ey(i,j+1,k);
#endif
},
// Apply Boundary condition to By
[=] AMREX_GPU_DEVICE (int i, int j, int k){
// At the +x boundary (innermost guard cell)
if ( i==domain_box.bigEnd(0)+1 )
By(i,j,k) = coef1_x * By(i,j,k) - coef2_x * Ez(i,j,k);
// At the -x boundary (innermost guard cell)
if ( i==domain_box.smallEnd(0)-1 )
By(i,j,k) = coef1_x * By(i,j,k) + coef2_x * Ez(i+1,j,k);
#ifdef WARPX_DIM_3D
// At the +z boundary (innermost guard cell)
if ( k==domain_box.bigEnd(2)+1 )
By(i,j,k) = coef1_z * By(i,j,k) + coef2_z * Ex(i,j,k);
// At the -z boundary (innermost guard cell)
if ( k==domain_box.smallEnd(2)-1 )
By(i,j,k) = coef1_z * By(i,j,k) - coef2_z * Ex(i,j,k+1);
#elif WARPX_DIM_XZ
// At the +z boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 )
By(i,j,k) = coef1_z * By(i,j,k) + coef2_z * Ex(i,j,k);
// At the -z boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 )
By(i,j,k) = coef1_z * By(i,j,k) - coef2_z * Ex(i,j+1,k);
#endif
},
// Apply Boundary condition to Bz
[=] AMREX_GPU_DEVICE (int i, int j, int k){
// At the +x boundary (innermost guard cell)
if ( i==domain_box.bigEnd(0)+1 )
Bz(i,j,k) = coef1_x * Bz(i,j,k) + coef2_x * Ey(i,j,k);
// At the -x boundary (innermost guard cell)
if ( i==domain_box.smallEnd(0)-1 )
Bz(i,j,k) = coef1_x * Bz(i,j,k) - coef2_x * Ey(i+1,j,k);
#ifdef WARPX_DIM_3D
// At the +y boundary (innermost guard cell)
if ( j==domain_box.bigEnd(1)+1 )
Bz(i,j,k) = coef1_y * Bz(i,j,k) - coef2_y * Ex(i,j,k);
// At the -y boundary (innermost guard cell)
if ( j==domain_box.smallEnd(1)-1 )
Bz(i,j,k) = coef1_y * Bz(i,j,k) + coef2_y * Ex(i,j+1,k);
#endif
}
);
}
#endif // WARPX_DIM_RZ
}
|