aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/FiniteDifferenceSolver/FiniteDifferenceAlgorithms/CartesianNodalAlgorithm.H
blob: 5c1d686877bbd989cb93f4d4dfd7337253eb4ada (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/* Copyright 2020 Remi Lehe
 *
 * This file is part of WarpX.
 *
 * License: BSD-3-Clause-LBNL
 */

#ifndef WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_NODAL_H_
#define WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_NODAL_H_

#include "Utils/WarpXConst.H"

#include <AMReX.H>
#include <AMReX_Array4.H>
#include <AMReX_Gpu.H>
#include <AMReX_REAL.H>

#include <array>
#include <cmath>


/**
 * This struct contains only static functions to initialize the stencil coefficients
 * and to compute finite-difference derivatives for the Cartesian nodal algorithm.
 */
struct CartesianNodalAlgorithm {

    static void InitializeStencilCoefficients (
        std::array<amrex::Real,3>& cell_size,
        amrex::Vector<amrex::Real>& stencil_coefs_x,
        amrex::Vector<amrex::Real>& stencil_coefs_y,
        amrex::Vector<amrex::Real>& stencil_coefs_z ) {

        using namespace amrex;

        // Store the inverse cell size along each direction in the coefficients
        stencil_coefs_x.resize(1);
        stencil_coefs_x[0] = 1._rt/cell_size[0];
        stencil_coefs_y.resize(1);
        stencil_coefs_y[0] = 1._rt/cell_size[1];
        stencil_coefs_z.resize(1);
        stencil_coefs_z[0] = 1._rt/cell_size[2];
    }

    /**
     * Compute the maximum timestep, for which the scheme remains stable
     * (Courant-Friedrichs-Levy limit) */
    static amrex::Real ComputeMaxDt ( amrex::Real const * const dx ) {
        using namespace amrex::literals;
        amrex::Real const delta_t  = 1._rt / ( std::sqrt( AMREX_D_TERM(
                                           1._rt/(dx[0]*dx[0]),
                                         + 1._rt/(dx[1]*dx[1]),
                                         + 1._rt/(dx[2]*dx[2])
                                     ) ) * PhysConst::c );
        return delta_t;
    }

    /**
     * \brief Returns maximum number of guard cells required by the field-solve
     */
    static amrex::IntVect GetMaxGuardCell () {
        // The nodal solver requires one guard cell in each dimension
        return (amrex::IntVect(AMREX_D_DECL(1,1,1)));
    }

    /**
     * Perform derivative along x
     * (For a solver on a staggered grid, `UpwardDx` and `DownwardDx` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real UpwardDx (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_x, int const /*n_coefs_x*/,
        int const i, int const j, int const k, int const ncomp=0 ) {

        using namespace amrex;
        Real const inv_dx = coefs_x[0];
        return 0.5_rt*inv_dx*( F(i+1,j,k,ncomp) - F(i-1,j,k,ncomp) );
    }

    /**
     * Perform derivative along x
     * (For a solver on a staggered grid, `UpwardDx` and `DownwardDx` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real DownwardDx (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_x, int const n_coefs_x,
        int const i, int const j, int const k, int const ncomp=0 ) {

        return UpwardDx( F, coefs_x, n_coefs_x, i, j, k ,ncomp);
        // For CartesianNodalAlgorithm, UpwardDx and DownwardDx are equivalent
    }

    /**
     * Perform derivative along y
     * (For a solver on a staggered grid, `UpwardDy` and `DownwardDy` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real UpwardDy (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_y, int const /*n_coefs_y*/,
        int const i, int const j, int const k, int const ncomp=0 ) {

        using namespace amrex;
#if defined WARPX_DIM_3D
        Real const inv_dy = coefs_y[0];
        return 0.5_rt*inv_dy*( F(i,j+1,k,ncomp) - F(i,j-1,k,ncomp) );
#elif (defined WARPX_DIM_XZ)
        ignore_unused(i, j, k, coefs_y, ncomp, F);
        return 0._rt; // 2D Cartesian: derivative along y is 0
#endif
    }

    /**
     * Perform derivative along y
     * (For a solver on a staggered grid, `UpwardDy` and `DownwardDy` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real DownwardDy (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_y, int const n_coefs_y,
        int const i, int const j, int const k, int const ncomp=0 ) {

        return UpwardDy( F, coefs_y, n_coefs_y, i, j, k ,ncomp);
        // For CartesianNodalAlgorithm, UpwardDy and DownwardDy are equivalent
    }

    /**
     * Perform derivative along z
     * (For a solver on a staggered grid, `UpwardDz` and `DownwardDz` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real UpwardDz (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_z, int const /*n_coefs_z*/,
        int const i, int const j, int const k, int const ncomp=0 ) {

        using namespace amrex;
        Real const inv_dz = coefs_z[0];
#if defined WARPX_DIM_3D
        return 0.5_rt*inv_dz*( F(i,j,k+1,ncomp) - F(i,j,k-1,ncomp) );
#elif (defined WARPX_DIM_XZ)
        return 0.5_rt*inv_dz*( F(i,j+1,k,ncomp) - F(i,j-1,k,ncomp) );
#endif
    }

    /**
     * Perform derivative along z
     * (For a solver on a staggered grid, `UpwardDz` and `DownwardDz` take into
     * account the staggering; but for `CartesianNodalAlgorithm`, they are equivalent) */
    AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE
    static amrex::Real DownwardDz (
        amrex::Array4<amrex::Real> const& F,
        amrex::Real const * const coefs_z, int const n_coefs_z,
        int const i, int const j, int const k, int const ncomp=0 ) {

        return UpwardDz( F, coefs_z, n_coefs_z, i, j, k ,ncomp);
        // For CartesianNodalAlgorithm, UpwardDz and DownwardDz are equivalent
    }

};

#endif // WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_NODAL_H_