aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp
blob: f869da90c1fee21e61d1a1b003bc68ce7de262bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include <GalileanAlgorithm.H>
#include <WarpXConst.H>
#include <cmath>

using namespace amrex;

/* \brief Initialize coefficients for the update equation */
GalileanAlgorithm::GalileanAlgorithm(const SpectralKSpace& spectral_kspace,
                         const DistributionMapping& dm,
                         const int norder_x, const int norder_y,
                         const int norder_z, const bool nodal,
                         const Array<Real, 3>& v_galilean,
                         const Real dt)
     // Initialize members of base class
     : SpectralBaseAlgorithm( spectral_kspace, dm,
                              norder_x, norder_y, norder_z, nodal )
{
    const BoxArray& ba = spectral_kspace.spectralspace_ba;

    // Allocate the arrays of coefficients
    C_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    S_ck_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    X1_coef = SpectralComplexCoefficients(ba, dm, 1, 0);
    X2_coef = SpectralComplexCoefficients(ba, dm, 1, 0);
    X3_coef = SpectralComplexCoefficients(ba, dm, 1, 0);
    X4_coef = SpectralComplexCoefficients(ba, dm, 1, 0);
    Theta2_coef = SpectralComplexCoefficients(ba, dm, 1, 0);

    InitializeSpectralCoefficients(spectral_kspace, dm, v_galilean, dt);

};

/* Advance the E and B field in spectral space (stored in `f`)
 * over one time step */
void
GalileanAlgorithm::pushSpectralFields(SpectralFieldData& f) const{

    // Loop over boxes
    for (MFIter mfi(f.fields); mfi.isValid(); ++mfi){

        const Box& bx = f.fields[mfi].box();

        // Extract arrays for the fields to be updated
        Array4<Complex> fields = f.fields[mfi].array();
        // Extract arrays for the coefficients
        Array4<const Real> C_arr = C_coef[mfi].array();
        Array4<const Real> S_ck_arr = S_ck_coef[mfi].array();
        Array4<const Complex> X1_arr = X1_coef[mfi].array();
        Array4<const Complex> X2_arr = X2_coef[mfi].array();
        Array4<const Complex> X3_arr = X3_coef[mfi].array();
        Array4<const Complex> X4_arr = X4_coef[mfi].array();
        Array4<const Complex> Theta2_arr = Theta2_coef[mfi].array();

        // Extract pointers for the k vectors
        const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr();
#if (AMREX_SPACEDIM==3)
        const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr();
#endif
        const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr();

        // Loop over indices within one box
        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            // Record old values of the fields to be updated
            using Idx = SpectralFieldIndex;
            const Complex Ex_old = fields(i,j,k,Idx::Ex);
            const Complex Ey_old = fields(i,j,k,Idx::Ey);
            const Complex Ez_old = fields(i,j,k,Idx::Ez);
            const Complex Bx_old = fields(i,j,k,Idx::Bx);
            const Complex By_old = fields(i,j,k,Idx::By);
            const Complex Bz_old = fields(i,j,k,Idx::Bz);
            // Shortcut for the values of J and rho
            const Complex Jx = fields(i,j,k,Idx::Jx);
            const Complex Jy = fields(i,j,k,Idx::Jy);
            const Complex Jz = fields(i,j,k,Idx::Jz);
            const Complex rho_old = fields(i,j,k,Idx::rho_old);
            const Complex rho_new = fields(i,j,k,Idx::rho_new);
            // k vector values, and coefficients
            const Real kx = modified_kx_arr[i];
#if (AMREX_SPACEDIM==3)
            const Real ky = modified_ky_arr[j];
            const Real kz = modified_kz_arr[k];
#else
            constexpr Real ky = 0;
            const Real kz = modified_kz_arr[j];
#endif
            constexpr Real c2 = PhysConst::c*PhysConst::c;
            constexpr Complex I = Complex{0,1};
            const Real C = C_arr(i,j,k);
            const Real S_ck = S_ck_arr(i,j,k);
            const Complex X1 = X1_arr(i,j,k);
            const Complex X2 = X2_arr(i,j,k);
            const Complex X3 = X3_arr(i,j,k);
            const Complex X4 = X4_arr(i,j,k);
            const Complex T2 = Theta2_arr(i,j,k);

            // Update E (see the original Galilean article)
            fields(i,j,k,Idx::Ex) = T2*C*Ex_old
                        + T2*S_ck*c2*I*(ky*Bz_old - kz*By_old)
                        + X4*Jx - I*(X2*rho_new - T2*X3*rho_old)*kx;
            fields(i,j,k,Idx::Ey) = T2*C*Ey_old
                        + T2*S_ck*c2*I*(kz*Bx_old - kx*Bz_old)
                        + X4*Jy - I*(X2*rho_new - T2*X3*rho_old)*ky;
            fields(i,j,k,Idx::Ez) = T2*C*Ez_old
                        + T2*S_ck*c2*I*(kx*By_old - ky*Bx_old)
                        + X4*Jz - I*(X2*rho_new - T2*X3*rho_old)*kz;
            // Update B (see the original Galilean article)
            // Note: here X1 is T2*x1/(ep0*c*c*k_norm*k_norm), where
            // x1 has the same definition as in the original paper
            fields(i,j,k,Idx::Bx) = T2*C*Bx_old
                        - T2*S_ck*I*(ky*Ez_old - kz*Ey_old)
                        +      X1*I*(ky*Jz     - kz*Jy);
            fields(i,j,k,Idx::By) = T2*C*By_old
                        - T2*S_ck*I*(kz*Ex_old - kx*Ez_old)
                        +      X1*I*(kz*Jx     - kx*Jz);
            fields(i,j,k,Idx::Bz) = T2*C*Bz_old
                        - T2*S_ck*I*(kx*Ey_old - ky*Ex_old)
                        +      X1*I*(kx*Jy     - ky*Jx);
        });
    }
};


void GalileanAlgorithm::InitializeSpectralCoefficients(const SpectralKSpace& spectral_kspace,
                                    const amrex::DistributionMapping& dm,
                                    const Array<Real, 3>& v_galilean,
                                    const amrex::Real dt)
{
    const BoxArray& ba = spectral_kspace.spectralspace_ba;
    // Fill them with the right values:
    // Loop over boxes and allocate the corresponding coefficients
    // for each box owned by the local MPI proc
    for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){

        const Box& bx = ba[mfi];

        // Extract pointers for the k vectors
        const Real* modified_kx = modified_kx_vec[mfi].dataPtr();
    #if (AMREX_SPACEDIM==3)
        const Real* modified_ky = modified_ky_vec[mfi].dataPtr();
    #endif
        const Real* modified_kz = modified_kz_vec[mfi].dataPtr();
        // Extract arrays for the coefficients
        Array4<Real> C = C_coef[mfi].array();
        Array4<Real> S_ck = S_ck_coef[mfi].array();
        Array4<Complex> X1 = X1_coef[mfi].array();
        Array4<Complex> X2 = X2_coef[mfi].array();
        Array4<Complex> X3 = X3_coef[mfi].array();
        Array4<Complex> X4 = X4_coef[mfi].array();
        Array4<Complex> Theta2 = Theta2_coef[mfi].array();
        // Extract reals (for portability on GPU)
        Real vx = v_galilean[0];
        Real vy = v_galilean[1];
        Real vz = v_galilean[2];

        // Loop over indices within one box
        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            // Calculate norm of vector
            const Real k_norm = std::sqrt(
                std::pow(modified_kx[i], 2) +
    #if (AMREX_SPACEDIM==3)
                std::pow(modified_ky[j], 2) +
                std::pow(modified_kz[k], 2));
    #else
                std::pow(modified_kz[j], 2));
    #endif

            // Calculate coefficients
            constexpr Real c = PhysConst::c;
            constexpr Real ep0 = PhysConst::ep0;
            const Complex I{0.,1.};
            if (k_norm != 0){

                C(i,j,k) = std::cos(c*k_norm*dt);
                S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm);

                // Calculate dot product with galilean velocity
                const Real kv = modified_kx[i]*vx +
    #if (AMREX_SPACEDIM==3)
                                 modified_ky[j]*vy +
                                 modified_kz[k]*vz;
    #else
                                 modified_kz[j]*vz;
    #endif

                const Real nu = kv/(k_norm*c);
                const Complex theta = MathFunc::exp( 0.5*I*kv*dt );
                const Complex theta_star = MathFunc::exp( -0.5*I*kv*dt );
                const Complex e_theta = MathFunc::exp( I*c*k_norm*dt );

                Theta2(i,j,k) = theta*theta;

                if ( (nu != 1.) && (nu != 0) ) {

                    // Note: the coefficients X1, X2, X3 do not correspond
                    // exactly to the original Galilean paper, but the
                    // update equation have been modified accordingly so that
                    // the expressions/ below (with the update equations)
                    // are mathematically equivalent to those of the paper.
                    Complex x1 = 1./(1.-nu*nu) *
                        (theta_star - C(i,j,k)*theta + I*kv*S_ck(i,j,k)*theta);
                    // x1, above, is identical to the original paper
                    X1(i,j,k) = theta*x1/(ep0*c*c*k_norm*k_norm);
                    // The difference betwen X2 and X3 below, and those
                    // from the original paper is the factor ep0*k_norm*k_norm
                    X2(i,j,k) = (x1 - theta*(1 - C(i,j,k)))
                                /(theta_star-theta)/(ep0*k_norm*k_norm);
                    X3(i,j,k) = (x1 - theta_star*(1 - C(i,j,k)))
                                /(theta_star-theta)/(ep0*k_norm*k_norm);
                    X4(i,j,k) = I*kv*X1(i,j,k) - theta*theta*S_ck(i,j,k)/ep0;
                }
                if ( nu == 0) {
                    X1(i,j,k) = (1. - C(i,j,k)) / (ep0*c*c*k_norm*k_norm);
                    X2(i,j,k) = (1. - S_ck(i,j,k)/dt) / (ep0*k_norm*k_norm);
                    X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt) / (ep0*k_norm*k_norm);
                    X4(i,j,k) = -S_ck(i,j,k)/ep0;
                }
                if ( nu == 1.) {
                    X1(i,j,k) = (1. - e_theta*e_theta + 2.*I*c*k_norm*dt) / (4.*c*c*ep0*k_norm*k_norm);
                    X2(i,j,k) = (3. - 4.*e_theta + e_theta*e_theta + 2.*I*c*k_norm*dt) / (4.*ep0*k_norm*k_norm*(1.- e_theta));
                    X3(i,j,k) = (3. - 2./e_theta - 2.*e_theta + e_theta*e_theta - 2.*I*c*k_norm*dt) / (4.*ep0*(e_theta - 1.)*k_norm*k_norm);
                    X4(i,j,k) = I*(-1. + e_theta*e_theta + 2.*I*c*k_norm*dt) / (4.*ep0*c*k_norm);
                }

            } else { // Handle k_norm = 0, by using the analytical limit
                C(i,j,k) = 1.;
                S_ck(i,j,k) = dt;
                X1(i,j,k) = dt*dt/(2. * ep0);
                X2(i,j,k) = c*c*dt*dt/(6. * ep0);
                X3(i,j,k) = - c*c*dt*dt/(3. * ep0);
                X4(i,j,k) = -dt/ep0;
                Theta2(i,j,k) = 1.;
            }
        });
    }
}