aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp
blob: 7f9fd3edb36a5e9278448574a4b8ed09591f6381 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/* Copyright 2019 Remi Lehe, Revathi Jambunathan, Edoardo Zoni
 *
 * This file is part of WarpX.
 *
 * License: BSD-3-Clause-LBNL
 */
#include "WarpX.H"
#include "PsatdAlgorithm.H"
#include "Utils/WarpXConst.H"
#include "Utils/WarpXProfilerWrapper.H"

#include <cmath>


#if WARPX_USE_PSATD
using namespace amrex;

/**
 * \brief Constructor
 */
PsatdAlgorithm::PsatdAlgorithm(const SpectralKSpace& spectral_kspace,
                         const DistributionMapping& dm,
                         const int norder_x, const int norder_y,
                         const int norder_z, const bool nodal, const Real dt,
                         const bool update_with_rho)
    // Initialize members of base class
    : m_dt( dt ),
      m_update_with_rho( update_with_rho ),
      SpectralBaseAlgorithm( spectral_kspace, dm, norder_x, norder_y, norder_z, nodal )
{
    const BoxArray& ba = spectral_kspace.spectralspace_ba;

    // Allocate the arrays of coefficients
    C_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    S_ck_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    X1_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    X2_coef = SpectralRealCoefficients(ba, dm, 1, 0);
    X3_coef = SpectralRealCoefficients(ba, dm, 1, 0);

    // Initialize coefficients for update equations
    InitializeSpectralCoefficients(spectral_kspace, dm, dt);
}

/**
 * \brief Advance E and B fields in spectral space (stored in `f`) over one time step
 */
void
PsatdAlgorithm::pushSpectralFields(SpectralFieldData& f) const{

    const bool update_with_rho = m_update_with_rho;

    // Loop over boxes
    for (MFIter mfi(f.fields); mfi.isValid(); ++mfi){

        const Box& bx = f.fields[mfi].box();

        // Extract arrays for the fields to be updated
        Array4<Complex> fields = f.fields[mfi].array();
        // Extract arrays for the coefficients
        Array4<const Real> C_arr = C_coef[mfi].array();
        Array4<const Real> S_ck_arr = S_ck_coef[mfi].array();
        Array4<const Real> X1_arr = X1_coef[mfi].array();
        Array4<const Real> X2_arr = X2_coef[mfi].array();
        Array4<const Real> X3_arr = X3_coef[mfi].array();
        // Extract pointers for the k vectors
        const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr();
#if (AMREX_SPACEDIM==3)
        const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr();
#endif
        const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr();

        // Loop over indices within one box
        ParallelFor( bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            using Idx = SpectralFieldIndex;

            const Complex Ex_old = fields(i,j,k,Idx::Ex);
            const Complex Ey_old = fields(i,j,k,Idx::Ey);
            const Complex Ez_old = fields(i,j,k,Idx::Ez);
            const Complex Bx_old = fields(i,j,k,Idx::Bx);
            const Complex By_old = fields(i,j,k,Idx::By);
            const Complex Bz_old = fields(i,j,k,Idx::Bz);

            // Shortcut for the values of J and rho
            const Complex Jx = fields(i,j,k,Idx::Jx);
            const Complex Jy = fields(i,j,k,Idx::Jy);
            const Complex Jz = fields(i,j,k,Idx::Jz);
            const Complex rho_old = fields(i,j,k,Idx::rho_old);
            const Complex rho_new = fields(i,j,k,Idx::rho_new);

            // k vector values, and coefficients
            const Real kx = modified_kx_arr[i];
#if (AMREX_SPACEDIM==3)
            const Real ky = modified_ky_arr[j];
            const Real kz = modified_kz_arr[k];
#else
            constexpr Real ky = 0;
            const Real kz = modified_kz_arr[j];
#endif
            constexpr Real c2 = PhysConst::c*PhysConst::c;
            constexpr Real inv_eps0 = 1.0_rt/PhysConst::ep0;

            const Complex I = Complex{0,1};

            const Real C = C_arr(i,j,k);
            const Real S_ck = S_ck_arr(i,j,k);
            const Real X1 = X1_arr(i,j,k);
            const Real X2 = X2_arr(i,j,k);
            const Real X3 = X3_arr(i,j,k);

            // Update E (see WarpX online documentation: theory section)

            if (update_with_rho) {

                fields(i,j,k,Idx::Ex) = C*Ex_old + S_ck*(c2*I*(ky*Bz_old-kz*By_old)-inv_eps0*Jx)
                                        - I*(X2*rho_new-X3*rho_old)*kx;

                fields(i,j,k,Idx::Ey) = C*Ey_old + S_ck*(c2*I*(kz*Bx_old-kx*Bz_old)-inv_eps0*Jy)
                                        - I*(X2*rho_new-X3*rho_old)*ky;

                fields(i,j,k,Idx::Ez) = C*Ez_old + S_ck*(c2*I*(kx*By_old-ky*Bx_old)-inv_eps0*Jz)
                                        - I*(X2*rho_new-X3*rho_old)*kz;
            } else {

                Complex k_dot_J = kx*Jx + ky*Jy + kz*Jz;
                Complex k_dot_E = kx*Ex_old + ky*Ey_old + kz*Ez_old;

                fields(i,j,k,Idx::Ex) = C*Ex_old + S_ck*(c2*I*(ky*Bz_old-kz*By_old)-inv_eps0*Jx)
                                        + X2*k_dot_E*kx + X3*inv_eps0*k_dot_J*kx;

                fields(i,j,k,Idx::Ey) = C*Ey_old + S_ck*(c2*I*(kz*Bx_old-kx*Bz_old)-inv_eps0*Jy)
                                        + X2*k_dot_E*ky + X3*inv_eps0*k_dot_J*ky;

                fields(i,j,k,Idx::Ez) = C*Ez_old + S_ck*(c2*I*(kx*By_old-ky*Bx_old)-inv_eps0*Jz)
                                        + X2*k_dot_E*kz + X3*inv_eps0*k_dot_J*kz;
            }

            // Update B (see WarpX online documentation: theory section)

            fields(i,j,k,Idx::Bx) = C*Bx_old - S_ck*I*(ky*Ez_old-kz*Ey_old) + X1*I*(ky*Jz-kz*Jy);

            fields(i,j,k,Idx::By) = C*By_old - S_ck*I*(kz*Ex_old-kx*Ez_old) + X1*I*(kz*Jx-kx*Jz);

            fields(i,j,k,Idx::Bz) = C*Bz_old - S_ck*I*(kx*Ey_old-ky*Ex_old) + X1*I*(kx*Jy-ky*Jx);
        } );
    }
};

/**
 * \brief Initialize coefficients for update equations
 */
void PsatdAlgorithm::InitializeSpectralCoefficients(const SpectralKSpace& spectral_kspace,
                                    const amrex::DistributionMapping& dm,
                                    const amrex::Real dt)
{
    const bool update_with_rho = m_update_with_rho;

    const BoxArray& ba = spectral_kspace.spectralspace_ba;

    // Loop over boxes and allocate the corresponding coefficients
    // for each box owned by the local MPI proc
    for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){

        const Box& bx = ba[mfi];

        // Extract pointers for the k vectors
        const Real* modified_kx = modified_kx_vec[mfi].dataPtr();
#if (AMREX_SPACEDIM==3)
        const Real* modified_ky = modified_ky_vec[mfi].dataPtr();
#endif
        const Real* modified_kz = modified_kz_vec[mfi].dataPtr();

        // Extract arrays for the coefficients
        Array4<Real> C = C_coef[mfi].array();
        Array4<Real> S_ck = S_ck_coef[mfi].array();
        Array4<Real> X1 = X1_coef[mfi].array();
        Array4<Real> X2 = X2_coef[mfi].array();
        Array4<Real> X3 = X3_coef[mfi].array();

        // Loop over indices within one box
        ParallelFor( bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            // Calculate norm of vector
            const Real k_norm = std::sqrt(
                std::pow(modified_kx[i],2) +
#if (AMREX_SPACEDIM==3)
                std::pow(modified_ky[j],2) + std::pow(modified_kz[k],2));
#else
                std::pow(modified_kz[j],2));
#endif
            // Calculate coefficients
            constexpr Real c = PhysConst::c;
            constexpr Real eps0 = PhysConst::ep0;

            if (k_norm != 0) {
                C(i,j,k)    = std::cos(c*k_norm*dt);
                S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm);
                X1(i,j,k) = (1.0_rt-C(i,j,k))/(eps0*c*c*k_norm*k_norm);
                if (update_with_rho) {
                    X2(i,j,k) = (1.0_rt-S_ck(i,j,k)/dt)/(eps0*k_norm*k_norm);
                    X3(i,j,k) = (C(i,j,k)-S_ck(i,j,k)/dt)/(eps0*k_norm*k_norm);
                } else {
                    X2(i,j,k) = (1.0_rt-C(i,j,k))/(k_norm*k_norm);
                    X3(i,j,k) = (S_ck(i,j,k)-dt)/(k_norm*k_norm);
                }
            } else { // Handle k_norm = 0 with analytical limit
                C(i,j,k) = 1.0_rt;
                S_ck(i,j,k) = dt;
                X1(i,j,k) = 0.5_rt*dt*dt/eps0;
                if (update_with_rho) {
                    X2(i,j,k) = c*c*dt*dt/(6.0_rt*eps0);
                    X3(i,j,k) = -c*c*dt*dt/(3.0_rt*eps0);
                } else {
                    X2(i,j,k) = 0.5_rt*dt*dt*c*c;
                    X3(i,j,k) = -c*c*dt*dt*dt/6.0_rt;
                }
            }
        } );
     }
}

void
PsatdAlgorithm::CurrentCorrection( SpectralFieldData& field_data,
                                   std::array<std::unique_ptr<amrex::MultiFab>,3>& current,
                                   const std::unique_ptr<amrex::MultiFab>& rho ) {
    // Profiling
    WARPX_PROFILE( "PsatdAlgorithm::CurrentCorrection" );

    using Idx = SpectralFieldIndex;

    // Forward Fourier transform of J and rho
    field_data.ForwardTransform( *current[0], Idx::Jx, 0 );
    field_data.ForwardTransform( *current[1], Idx::Jy, 0 );
    field_data.ForwardTransform( *current[2], Idx::Jz, 0 );
    field_data.ForwardTransform( *rho, Idx::rho_old, 0 );
    field_data.ForwardTransform( *rho, Idx::rho_new, 1 );

    // Loop over boxes
    for (MFIter mfi(field_data.fields); mfi.isValid(); ++mfi){

        const Box& bx = field_data.fields[mfi].box();

        // Extract arrays for the fields to be updated
        Array4<Complex> fields = field_data.fields[mfi].array();

        // Extract pointers for the k vectors
        const Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr();
#if (AMREX_SPACEDIM==3)
        const Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr();
#endif
        const Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr();

        // Local copy of member variables before GPU loop
        const Real dt = m_dt;

        // Loop over indices within one box
        ParallelFor( bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            using Idx = SpectralFieldIndex;

            // Shortcuts for the values of J and rho
            const Complex Jx = fields(i,j,k,Idx::Jx);
            const Complex Jy = fields(i,j,k,Idx::Jy);
            const Complex Jz = fields(i,j,k,Idx::Jz);
            const Complex rho_old = fields(i,j,k,Idx::rho_old);
            const Complex rho_new = fields(i,j,k,Idx::rho_new);

            // k vector values, and coefficients
            const Real kx = modified_kx_arr[i];
#if (AMREX_SPACEDIM==3)
            const Real ky = modified_ky_arr[j];
            const Real kz = modified_kz_arr[k];
#else
            constexpr Real ky = 0;
            const Real kz = modified_kz_arr[j];
#endif
            const Real k_norm = std::sqrt( kx*kx + ky*ky + kz*kz );

            constexpr Complex I = Complex{0,1};

            // div(J) in Fourier space
            const Complex k_dot_J = kx*Jx + ky*Jy + kz*Jz;

            // Correct J
            if ( k_norm != 0 )
            {
                fields(i,j,k,Idx::Jx) = Jx - (k_dot_J-I*(rho_new-rho_old)/dt)*kx/(k_norm*k_norm);
                fields(i,j,k,Idx::Jy) = Jy - (k_dot_J-I*(rho_new-rho_old)/dt)*ky/(k_norm*k_norm);
                fields(i,j,k,Idx::Jz) = Jz - (k_dot_J-I*(rho_new-rho_old)/dt)*kz/(k_norm*k_norm);
            }
        } );
    }

    // Backward Fourier transform of J
    field_data.BackwardTransform( *current[0], Idx::Jx, 0 );
    field_data.BackwardTransform( *current[1], Idx::Jy, 0 );
    field_data.BackwardTransform( *current[2], Idx::Jz, 0 );
}

void
PsatdAlgorithm::VayDeposition (SpectralFieldData& field_data,
                               std::array<std::unique_ptr<amrex::MultiFab>,3>& current) {
    // Profiling
    WARPX_PROFILE("PsatdAlgorithm::VayDeposition");

    using Idx = SpectralFieldIndex;

    // Forward Fourier transform of D (temporarily stored in current):
    // D is nodal and does not match the staggering of J, therefore we pass the
    // actual staggering of D (IntVect(1)) to the ForwardTransform function
    field_data.ForwardTransform(*current[0], Idx::Jx, 0, IntVect(1));
    field_data.ForwardTransform(*current[1], Idx::Jy, 0, IntVect(1));
    field_data.ForwardTransform(*current[2], Idx::Jz, 0, IntVect(1));

    // Loop over boxes
    for (amrex::MFIter mfi(field_data.fields); mfi.isValid(); ++mfi) {

        const amrex::Box& bx = field_data.fields[mfi].box();

        // Extract arrays for the fields to be updated
        amrex::Array4<Complex> fields = field_data.fields[mfi].array();

        // Extract pointers for the modified k vectors
        const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr();
#if (AMREX_SPACEDIM==3)
        const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr();
#endif
        const amrex::Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr();

        // Loop over indices within one box
        ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            using Idx = SpectralFieldIndex;

            // Shortcuts for the values of D
            const Complex Dx = fields(i,j,k,Idx::Jx);
            const Complex Dy = fields(i,j,k,Idx::Jy);
            const Complex Dz = fields(i,j,k,Idx::Jz);

            // Imaginary unit
            constexpr Complex I = Complex{0._rt, 1._rt};

            // Modified k vector values
            const amrex::Real kx_mod = modified_kx_arr[i];
#if (AMREX_SPACEDIM==3)
            const amrex::Real ky_mod = modified_ky_arr[j];
            const amrex::Real kz_mod = modified_kz_arr[k];
#else
            constexpr amrex::Real ky_mod = 0._rt;
            const     amrex::Real kz_mod = modified_kz_arr[j];
#endif

            // Compute Jx
            if (kx_mod != 0._rt) fields(i,j,k,Idx::Jx) = I * Dx / kx_mod;
            else                 fields(i,j,k,Idx::Jx) = 0._rt;

#if (AMREX_SPACEDIM==3)
            // Compute Jy
            if (ky_mod != 0._rt) fields(i,j,k,Idx::Jy) = I * Dy / ky_mod;
            else                 fields(i,j,k,Idx::Jy) = 0._rt;
#endif

            // Compute Jz
            if (kz_mod != 0._rt) fields(i,j,k,Idx::Jz) = I * Dz / kz_mod;
            else                 fields(i,j,k,Idx::Jz) = 0._rt;

        });
    }

    // Backward Fourier transform of J
    field_data.BackwardTransform(*current[0], Idx::Jx, 0);
    field_data.BackwardTransform(*current[1], Idx::Jy, 0);
    field_data.BackwardTransform(*current[2], Idx::Jz, 0);
}
#endif // WARPX_USE_PSATD