1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/* Copyright 2019-2020 David Grote
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "SpectralKSpaceRZ.H"
#include "SpectralSolverRZ.H"
#include "SpectralAlgorithms/PsatdAlgorithmRZ.H"
#include "WarpX.H"
#include "Utils/WarpXProfilerWrapper.H"
/* \brief Initialize the spectral Maxwell solver
*
* This function selects the spectral algorithm to be used, allocates the
* corresponding coefficients for the discretized field update equation,
* and prepares the structures that store the fields in spectral space.
*
* \param n_rz_azimuthal_modes Number of azimuthal modes
* \param norder_z Order of accuracy of the spatial derivatives along z
* \param nodal Whether the solver is applied to a nodal or staggered grid
* \param dx Cell size along each dimension
* \param dt Time step
* \param pml Whether the boxes in which the solver is applied are PML boxes
* PML is not supported.
*/
SpectralSolverRZ::SpectralSolverRZ(amrex::BoxArray const & realspace_ba,
amrex::DistributionMapping const & dm,
int const n_rz_azimuthal_modes,
int const norder_z, bool const nodal,
amrex::RealVect const dx, amrex::Real const dt,
int const lev,
bool const pml )
: k_space(realspace_ba, dm, dx)
{
// Initialize all structures using the same distribution mapping dm
// - The k space object contains info about the size of
// the spectral space corresponding to each box in `realspace_ba`,
// as well as the value of the corresponding k coordinates.
// - Select the algorithm depending on the input parameters
// Initialize the corresponding coefficients over k space
// PML is not supported.
algorithm = std::unique_ptr<PsatdAlgorithmRZ>(
new PsatdAlgorithmRZ(k_space, dm, n_rz_azimuthal_modes, norder_z, nodal, dt));
// - Initialize arrays for fields in spectral space + FFT plans
field_data = SpectralFieldDataRZ(realspace_ba, k_space, dm,
algorithm->getRequiredNumberOfFields(),
n_rz_azimuthal_modes, lev);
};
void
SpectralSolverRZ::ForwardTransform (amrex::MultiFab const & field_mf,
int const field_index,
int const i_comp) {
WARPX_PROFILE("SpectralSolverRZ::ForwardTransform");
field_data.ForwardTransform(field_mf, field_index, i_comp);
}
void
SpectralSolverRZ::ForwardTransform (amrex::MultiFab const & field_mf1, int const field_index1,
amrex::MultiFab const & field_mf2, int const field_index2) {
WARPX_PROFILE("SpectralSolverRZ::ForwardTransform");
field_data.ForwardTransform(field_mf1, field_index1,
field_mf2, field_index2);
}
void
SpectralSolverRZ::BackwardTransform (amrex::MultiFab& field_mf,
int const field_index,
int const i_comp) {
WARPX_PROFILE("SpectralSolverRZ::BackwardTransform");
field_data.BackwardTransform(field_mf, field_index, i_comp);
}
void
SpectralSolverRZ::BackwardTransform (amrex::MultiFab& field_mf1, int const field_index1,
amrex::MultiFab& field_mf2, int const field_index2) {
WARPX_PROFILE("SpectralSolverRZ::BackwardTransform");
field_data.BackwardTransform(field_mf1, field_index1,
field_mf2, field_index2);
}
void
SpectralSolverRZ::pushSpectralFields () {
WARPX_PROFILE("SpectralSolverRZ::pushSpectralFields");
// Virtual function: the actual function used here depends
// on the sub-class of `SpectralBaseAlgorithm` that was
// initialized in the constructor of `SpectralSolverRZ`
algorithm->pushSpectralFields(field_data);
}
void
SpectralSolverRZ::ComputeSpectralDivE (const std::array<std::unique_ptr<amrex::MultiFab>,3>& Efield,
amrex::MultiFab& divE) {
algorithm->ComputeSpectralDivE(field_data, Efield, divE);
}
void
SpectralSolverRZ::CurrentCorrection (std::array<std::unique_ptr<amrex::MultiFab>,3>& current,
const std::unique_ptr<amrex::MultiFab>& rho) {
algorithm->CurrentCorrection(field_data, current, rho);
}
void
SpectralSolverRZ::VayDeposition (std::array<std::unique_ptr<amrex::MultiFab>,3>& current)
{
algorithm->VayDeposition(field_data, current);
}
|