1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
#include <WarpX.H>
#include <BilinearFilter.H>
#include <WarpX_f.H>
#ifdef _OPENMP
#include <omp.h>
#endif
using namespace amrex;
namespace {
void compute_stencil(Gpu::ManagedVector<Real> &stencil, int npass)
{
Gpu::ManagedVector<Real> old_s(1+npass,0.);
Gpu::ManagedVector<Real> new_s(1+npass,0.);
old_s[0] = 1.;
int jmax = 1;
amrex::Real loc;
// Convolve the filter with itself npass times
for(int ipass=1; ipass<npass+1; ipass++){
// element 0 has to be treated in its own way
new_s[0] = 0.5 * old_s[0];
if (1<jmax) new_s[0] += 0.5 * old_s[1];
loc = 0.;
// For each element j, apply the filter to
// old_s to get new_s[j]. loc stores the tmp
// filtered value.
for(int j=1; j<jmax+1; j++){
loc = 0.5 * old_s[j];
loc += 0.25 * old_s[j-1];
if (j<jmax) loc += 0.25 * old_s[j+1];
new_s[j] = loc;
}
// copy new_s into old_s
old_s = new_s;
// extend the stencil length for next iteration
jmax += 1;
}
// we use old_s here to make sure the stencil
// is corrent even when npass = 0
stencil = old_s;
stencil[0] *= 0.5; // because we will use it twice
}
}
void BilinearFilter::ComputeStencils(){
BL_PROFILE("BilinearFilter::ComputeStencils()");
stencil_length_each_dir = npass_each_dir;
stencil_length_each_dir += 1.;
#if (AMREX_SPACEDIM == 3)
// npass_each_dir = npass_x npass_y npass_z
stencil_x.resize( 1 + npass_each_dir[0] );
stencil_y.resize( 1 + npass_each_dir[1] );
stencil_z.resize( 1 + npass_each_dir[2] );
compute_stencil(stencil_x, npass_each_dir[0]);
compute_stencil(stencil_y, npass_each_dir[1]);
compute_stencil(stencil_z, npass_each_dir[2]);
#elif (AMREX_SPACEDIM == 2)
// npass_each_dir = npass_x npass_z
stencil_x.resize( 1 + npass_each_dir[0] );
stencil_z.resize( 1 + npass_each_dir[1] );
compute_stencil(stencil_x, npass_each_dir[0]);
compute_stencil(stencil_z, npass_each_dir[1]);
#endif
slen = stencil_length_each_dir.dim3();
#if (AMREX_SPACEDIM == 2)
slen.z = 1;
#endif
}
#ifdef AMREX_USE_CUDA
void
BilinearFilter::ApplyStencil (MultiFab& dstmf, const MultiFab& srcmf, int scomp, int dcomp, int ncomp)
{
BL_PROFILE("BilinearFilter::ApplyStencil()");
ncomp = std::min(ncomp, srcmf.nComp());
for (MFIter mfi(dstmf); mfi.isValid(); ++mfi)
{
const auto& src = srcmf.array(mfi);
const auto& dst = dstmf.array(mfi);
const Box& tbx = mfi.growntilebox();
const Box& gbx = amrex::grow(tbx,stencil_length_each_dir-1);
// tmpfab has enough ghost cells for the stencil
FArrayBox tmp_fab(gbx,ncomp);
Elixir tmp_eli = tmp_fab.elixir(); // Prevent the tmp data from being deleted too early
auto const& tmp = tmp_fab.array();
// Copy values in srcfab into tmpfab
const Box& ibx = gbx & srcmf[mfi].box();
AMREX_PARALLEL_FOR_4D ( gbx, ncomp, i, j, k, n,
{
if (ibx.contains(IntVect(AMREX_D_DECL(i,j,k)))) {
tmp(i,j,k,n) = src(i,j,k,n+scomp);
} else {
tmp(i,j,k,n) = 0.0;
}
});
// Apply filter
Filter(tbx, tmp, dst, 0, dcomp, ncomp);
}
}
void BilinearFilter::Filter (const Box& tbx,
Array4<Real const> const& tmp,
Array4<Real > const& dst,
int scomp, int dcomp, int ncomp)
{
amrex::Real const* AMREX_RESTRICT sx = stencil_x.data();
amrex::Real const* AMREX_RESTRICT sy = stencil_y.data();
amrex::Real const* AMREX_RESTRICT sz = stencil_z.data();
Dim3 slen_local = slen;
AMREX_PARALLEL_FOR_4D ( tbx, ncomp, i, j, k, n,
{
Real d = 0.0;
for (int iz=0; iz < slen_local.z; ++iz){
for (int iy=0; iy < slen_local.y; ++iy){
for (int ix=0; ix < slen_local.x; ++ix){
#if (AMREX_SPACEDIM == 3)
Real sss = sx[ix]*sy[iy]*sz[iz];
#else
Real sss = sx[ix]*sz[iy];
#endif
#if (AMREX_SPACEDIM == 3)
d += sss*( tmp(i-ix,j-iy,k-iz,scomp+n)
+tmp(i+ix,j-iy,k-iz,scomp+n)
+tmp(i-ix,j+iy,k-iz,scomp+n)
+tmp(i+ix,j+iy,k-iz,scomp+n)
+tmp(i-ix,j-iy,k+iz,scomp+n)
+tmp(i+ix,j-iy,k+iz,scomp+n)
+tmp(i-ix,j+iy,k+iz,scomp+n)
+tmp(i+ix,j+iy,k+iz,scomp+n));
#else
d += sss*( tmp(i-ix,j-iy,k,scomp+n)
+tmp(i+ix,j-iy,k,scomp+n)
+tmp(i-ix,j+iy,k,scomp+n)
+tmp(i+ix,j+iy,k,scomp+n));
#endif
}
}
}
dst(i,j,k,dcomp+n) = d;
});
}
#else
void
BilinearFilter::ApplyStencil (MultiFab& dstmf, const MultiFab& srcmf, int scomp, int dcomp, int ncomp)
{
BL_PROFILE("BilinearFilter::ApplyStencil()");
ncomp = std::min(ncomp, srcmf.nComp());
#ifdef _OPENMP
#pragma omp parallel
#endif
{
FArrayBox tmpfab;
for (MFIter mfi(dstmf,true); mfi.isValid(); ++mfi){
const auto& srcfab = srcmf[mfi];
auto& dstfab = dstmf[mfi];
const Box& tbx = mfi.growntilebox();
const Box& gbx = amrex::grow(tbx,stencil_length_each_dir-1);
// tmpfab has enough ghost cells for the stencil
tmpfab.resize(gbx,ncomp);
tmpfab.setVal(0.0, gbx, 0, ncomp);
// Copy values in srcfab into tmpfab
const Box& ibx = gbx & srcfab.box();
tmpfab.copy(srcfab, ibx, scomp, ibx, 0, ncomp);
// Apply filter
Filter(tbx, tmpfab.array(), dstfab.array(), 0, dcomp, ncomp);
}
}
}
void BilinearFilter::Filter (const Box& tbx,
Array4<Real const> const& tmp,
Array4<Real > const& dst,
int scomp, int dcomp, int ncomp)
{
const auto lo = amrex::lbound(tbx);
const auto hi = amrex::ubound(tbx);
// tmp and dst are of type Array4 (Fortran ordering)
amrex::Real const* AMREX_RESTRICT sx = stencil_x.data();
amrex::Real const* AMREX_RESTRICT sy = stencil_y.data();
amrex::Real const* AMREX_RESTRICT sz = stencil_z.data();
for (int n = 0; n < ncomp; ++n) {
// Set dst value to 0.
for (int k = lo.z; k <= hi.z; ++k) {
for (int j = lo.y; j <= hi.y; ++j) {
for (int i = lo.x; i <= hi.x; ++i) {
dst(i,j,k,dcomp+n) = 0.0;
}
}
}
// 3 nested loop on 3D stencil
for (int iz=0; iz < slen.z; ++iz){
for (int iy=0; iy < slen.y; ++iy){
for (int ix=0; ix < slen.x; ++ix){
#if (AMREX_SPACEDIM == 3)
Real sss = sx[ix]*sy[iy]*sz[iz];
#else
Real sss = sx[ix]*sz[iy];
#endif
// 3 nested loop on 3D array
for (int k = lo.z; k <= hi.z; ++k) {
for (int j = lo.y; j <= hi.y; ++j) {
AMREX_PRAGMA_SIMD
for (int i = lo.x; i <= hi.x; ++i) {
#if (AMREX_SPACEDIM == 3)
dst(i,j,k,dcomp+n) += sss*(tmp(i-ix,j-iy,k-iz,scomp+n)
+tmp(i+ix,j-iy,k-iz,scomp+n)
+tmp(i-ix,j+iy,k-iz,scomp+n)
+tmp(i+ix,j+iy,k-iz,scomp+n)
+tmp(i-ix,j-iy,k+iz,scomp+n)
+tmp(i+ix,j-iy,k+iz,scomp+n)
+tmp(i-ix,j+iy,k+iz,scomp+n)
+tmp(i+ix,j+iy,k+iz,scomp+n));
#else
dst(i,j,k,dcomp+n) += sss*(tmp(i-ix,j-iy,k,scomp+n)
+tmp(i+ix,j-iy,k,scomp+n)
+tmp(i-ix,j+iy,k,scomp+n)
+tmp(i+ix,j+iy,k,scomp+n));
#endif
}
}
}
}
}
}
}
}
#endif
|