aboutsummaryrefslogtreecommitdiff
path: root/Source/Initialization/WarpXInitData.cpp
blob: 790485f1952988edd7ac6b0017199c4b692026f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/* Copyright 2019-2020 Andrew Myers, Ann Almgren, Aurore Blelly
 * Axel Huebl, Burlen Loring, Maxence Thevenet
 * Michael Rowan, Remi Lehe, Revathi Jambunathan
 * Weiqun Zhang
 *
 *
 * This file is part of WarpX.
 *
 * License: BSD-3-Clause-LBNL
 */
#include "WarpX.H"
#include "Filter/BilinearFilter.H"
#include "Filter/NCIGodfreyFilter.H"
#include "Parser/GpuParser.H"
#include "Utils/WarpXUtil.H"
#include "Utils/WarpXAlgorithmSelection.H"

#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>

#ifdef BL_USE_SENSEI_INSITU
#   include <AMReX_AmrMeshInSituBridge.H>
#endif

#include <memory>

using namespace amrex;

void
WarpX::PostProcessBaseGrids (BoxArray& ba0) const
{
    if (numprocs != 0) {
        const Box& dom = Geom(0).Domain();
        const IntVect& domlo = dom.smallEnd();
        const IntVect& domlen = dom.size();
        const IntVect sz = domlen / numprocs;
        const IntVect extra = domlen - sz*numprocs;
        BoxList bl;
#if (AMREX_SPACEDIM == 3)
        for (int k = 0; k < numprocs[2]; ++k) {
            // The first extra[2] blocks get one extra cell with a total of
            // sz[2]+1.  The rest get sz[2] cells.  The docomposition in y
            // and x directions are similar.
            int klo = (k < extra[2]) ? k*(sz[2]+1) : (k*sz[2]+extra[2]);
            int khi = (k < extra[2]) ? klo+(sz[2]+1)-1 : klo+sz[2]-1;
            klo += domlo[2];
            khi += domlo[2];
#endif
            for (int j = 0; j < numprocs[1]; ++j) {
                int jlo = (j < extra[1]) ? j*(sz[1]+1) : (j*sz[1]+extra[1]);
                int jhi = (j < extra[1]) ? jlo+(sz[1]+1)-1 : jlo+sz[1]-1;
                jlo += domlo[1];
                jhi += domlo[1];
                for (int i = 0; i < numprocs[0]; ++i) {
                    int ilo = (i < extra[0]) ? i*(sz[0]+1) : (i*sz[0]+extra[0]);
                    int ihi = (i < extra[0]) ? ilo+(sz[0]+1)-1 : ilo+sz[0]-1;
                    ilo += domlo[0];
                    ihi += domlo[0];
                    bl.push_back(Box(IntVect(AMREX_D_DECL(ilo,jlo,klo)),
                                     IntVect(AMREX_D_DECL(ihi,jhi,khi))));
        AMREX_D_TERM(},},})
        ba0 = BoxArray(std::move(bl));
    }
}

void
WarpX::InitData ()
{
    WARPX_PROFILE("WarpX::InitData()");

    if (restart_chkfile.empty())
    {
        ComputeDt();
        InitFromScratch();
    }
    else
    {
        InitFromCheckpoint();
        if (is_synchronized) {
            ComputeDt();
        }
        PostRestart();
    }

    ComputePMLFactors();

    if (WarpX::use_fdtd_nci_corr) {
        WarpX::InitNCICorrector();
    }

    if (WarpX::use_filter) {
        WarpX::InitFilter();
    }

    BuildBufferMasks();

    if (WarpX::em_solver_medium==1) {
        m_macroscopic_properties->InitData();
    }

    InitDiagnostics();

    if (ParallelDescriptor::IOProcessor()) {
        std::cout << "\nGrids Summary:\n";
        printGridSummary(std::cout, 0, finestLevel());
    }

    if (restart_chkfile.empty())
    {
        multi_diags->FilterComputePackFlush( -1, true );

        // Write reduced diagnostics before the first iteration.
        if (reduced_diags->m_plot_rd != 0)
        {
            reduced_diags->ComputeDiags(-1);
            reduced_diags->WriteToFile(-1);
        }
    }

    PerformanceHints();
}

void
WarpX::InitDiagnostics () {
    multi_diags->InitData();
    if (do_back_transformed_diagnostics) {
        const Real* current_lo = geom[0].ProbLo();
        const Real* current_hi = geom[0].ProbHi();
        Real dt_boost = dt[0];
        // Find the positions of the lab-frame box that corresponds to the boosted-frame box at t=0
        Real zmin_lab = static_cast<Real>(
            current_lo[moving_window_dir]/( (1.+beta_boost)*gamma_boost ));
        Real zmax_lab = static_cast<Real>(
            current_hi[moving_window_dir]/( (1.+beta_boost)*gamma_boost ));
        myBFD = std::make_unique<BackTransformedDiagnostic>(
                                               zmin_lab,
                                               zmax_lab,
                                               moving_window_v, dt_snapshots_lab,
                                               num_snapshots_lab,
                                               dt_slice_snapshots_lab,
                                               num_slice_snapshots_lab,
                                               gamma_boost, t_new[0], dt_boost,
                                               moving_window_dir, geom[0],
                                               slice_realbox,
                                               particle_slice_width_lab);
    }
}

void
WarpX::InitFromScratch ()
{
    const Real time = 0.0;

    AmrCore::InitFromScratch(time);  // This will call MakeNewLevelFromScratch

    mypc->AllocData();
    mypc->InitData();

    // Loop through species and calculate their space-charge field
    bool const reset_fields = false; // Do not erase previous user-specified values on the grid
    ComputeSpaceChargeField(reset_fields);

    InitPML();
}

void
WarpX::InitPML ()
{
    if (do_pml)
    {
        amrex::IntVect do_pml_Lo_corrected = do_pml_Lo;

#ifdef WARPX_DIM_RZ
        do_pml_Lo_corrected[0] = 0; // no PML at r=0, in cylindrical geometry
#endif
        pml[0] = std::make_unique<PML>(boxArray(0), DistributionMap(0), &Geom(0), nullptr,
                             pml_ncell, pml_delta, amrex::IntVect::TheZeroVector(),
                             dt[0], nox_fft, noy_fft, noz_fft, do_nodal,
                             do_dive_cleaning, do_moving_window,
                             pml_has_particles, do_pml_in_domain,
                             do_pml_Lo_corrected, do_pml_Hi);
        for (int lev = 1; lev <= finest_level; ++lev)
        {
            amrex::IntVect do_pml_Lo_MR = amrex::IntVect::TheUnitVector();
#ifdef WARPX_DIM_RZ
            //In cylindrical geometry, if the edge of the patch is at r=0, do not add PML
            if ((max_level > 0) && (fine_tag_lo[0]==0.)) {
                do_pml_Lo_MR[0] = 0;
            }
#endif
            pml[lev] = std::make_unique<PML>(boxArray(lev), DistributionMap(lev),
                                   &Geom(lev), &Geom(lev-1),
                                   pml_ncell, pml_delta, refRatio(lev-1),
                                   dt[lev], nox_fft, noy_fft, noz_fft, do_nodal,
                                   do_dive_cleaning, do_moving_window,
                                   pml_has_particles, do_pml_in_domain,
                                   do_pml_Lo_MR, amrex::IntVect::TheUnitVector());
        }
    }
}

void
WarpX::ComputePMLFactors ()
{
    if (do_pml)
    {
        for (int lev = 0; lev <= finest_level; ++lev)
        {
            pml[lev]->ComputePMLFactors(dt[lev]);
        }
    }
}

void
WarpX::InitNCICorrector ()
{
    if (WarpX::use_fdtd_nci_corr)
    {
        for (int lev = 0; lev <= max_level; ++lev)
        {
            const Geometry& gm = Geom(lev);
            const Real* dx = gm.CellSize();
            amrex::Real dz, cdtodz;
            if (AMREX_SPACEDIM == 3){
                dz = dx[2];
            }else{
                dz = dx[1];
            }
            cdtodz = PhysConst::c * dt[lev] / dz;

            // Initialize Godfrey filters
            // Same filter for fields Ex, Ey and Bz
            const bool nodal_gather = !galerkin_interpolation;
            nci_godfrey_filter_exeybz[lev] = std::make_unique<NCIGodfreyFilter>(
                godfrey_coeff_set::Ex_Ey_Bz, cdtodz, nodal_gather);
            // Same filter for fields Bx, By and Ez
            nci_godfrey_filter_bxbyez[lev] = std::make_unique<NCIGodfreyFilter>(
                godfrey_coeff_set::Bx_By_Ez, cdtodz, nodal_gather);
            // Compute Godfrey filters stencils
            nci_godfrey_filter_exeybz[lev]->ComputeStencils();
            nci_godfrey_filter_bxbyez[lev]->ComputeStencils();
        }
    }
}

void
WarpX::InitFilter (){
    if (WarpX::use_filter){
        WarpX::bilinear_filter.npass_each_dir = WarpX::filter_npass_each_dir.toArray<unsigned int>();
        WarpX::bilinear_filter.ComputeStencils();
    }
}

void
WarpX::PostRestart ()
{
    if (WarpX::maxwell_solver_id == MaxwellSolverAlgo::PSATD) {
        amrex::Abort("WarpX::PostRestart: TODO for PSATD");
    }
    mypc->PostRestart();
}


void
WarpX::InitLevelData (int lev, Real /*time*/)
{

    ParmParse pp("warpx");

    // default values of E_external_grid and B_external_grid
    // are used to set the E and B field when "constant" or
    // "parser" is not explicitly used in the input.
    pp.query("B_ext_grid_init_style", B_ext_grid_s);
    std::transform(B_ext_grid_s.begin(),
                   B_ext_grid_s.end(),
                   B_ext_grid_s.begin(),
                   ::tolower);

    pp.query("E_ext_grid_init_style", E_ext_grid_s);
    std::transform(E_ext_grid_s.begin(),
                   E_ext_grid_s.end(),
                   E_ext_grid_s.begin(),
                   ::tolower);

    // if the input string is "constant", the values for the
    // external grid must be provided in the input.
    if (B_ext_grid_s == "constant")
        pp.getarr("B_external_grid", B_external_grid);

    // if the input string is "constant", the values for the
    // external grid must be provided in the input.
    if (E_ext_grid_s == "constant")
        pp.getarr("E_external_grid", E_external_grid);

    // initialize the averaged fields only if the averaged algorithm
    // is activated ('psatd.do_time_averaging=1')
    ParmParse ppsatd("psatd");
    ppsatd.query("do_time_averaging", fft_do_time_averaging );

    for (int i = 0; i < 3; ++i) {
        current_fp[lev][i]->setVal(0.0);
        if (lev > 0)
           current_cp[lev][i]->setVal(0.0);

        // Initialize aux MultiFabs on level 0
        if (lev == 0) {
            Bfield_aux[lev][i]->setVal(0.0);
            Efield_aux[lev][i]->setVal(0.0);
            if (fft_do_time_averaging) {
                Bfield_avg_aux[lev][i]->setVal(0.0);
                Efield_avg_aux[lev][i]->setVal(0.0);
            }
        }

        if (B_ext_grid_s == "constant" || B_ext_grid_s == "default") {
           Bfield_fp[lev][i]->setVal(B_external_grid[i]);
           if (fft_do_time_averaging) {
                Bfield_avg_fp[lev][i]->setVal(B_external_grid[i]);
           }

           if (lev > 0) {
              Bfield_aux[lev][i]->setVal(B_external_grid[i]);
              Bfield_cp[lev][i]->setVal(B_external_grid[i]);
              if (fft_do_time_averaging) {
                  Bfield_avg_aux[lev][i]->setVal(B_external_grid[i]);
                  Bfield_avg_cp[lev][i]->setVal(B_external_grid[i]);
              }
           }
        }
        if (E_ext_grid_s == "constant" || E_ext_grid_s == "default") {
           Efield_fp[lev][i]->setVal(E_external_grid[i]);
           if (fft_do_time_averaging) {
               Efield_avg_fp[lev][i]->setVal(E_external_grid[i]);
            }

           if (lev > 0) {
              Efield_aux[lev][i]->setVal(E_external_grid[i]);
              Efield_cp[lev][i]->setVal(E_external_grid[i]);
              if (fft_do_time_averaging) {
                  Efield_avg_aux[lev][i]->setVal(E_external_grid[i]);
                  Efield_avg_cp[lev][i]->setVal(E_external_grid[i]);
              }
           }
        }
    }

    // if the input string for the B-field is "parse_b_ext_grid_function",
    // then the analytical expression or function must be
    // provided in the input file.
    if (B_ext_grid_s == "parse_b_ext_grid_function") {

#ifdef WARPX_DIM_RZ
       amrex::Abort("E and B parser for external fields does not work with RZ -- TO DO");
#endif
       Store_parserString(pp, "Bx_external_grid_function(x,y,z)",
                                                    str_Bx_ext_grid_function);
       Store_parserString(pp, "By_external_grid_function(x,y,z)",
                                                    str_By_ext_grid_function);
       Store_parserString(pp, "Bz_external_grid_function(x,y,z)",
                                                    str_Bz_ext_grid_function);
       Bxfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_Bx_ext_grid_function,{"x","y","z"}));
       Byfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_By_ext_grid_function,{"x","y","z"}));
       Bzfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_Bz_ext_grid_function,{"x","y","z"}));

       // Initialize Bfield_fp with external function
       InitializeExternalFieldsOnGridUsingParser(Bfield_fp[lev][0].get(),
                                                 Bfield_fp[lev][1].get(),
                                                 Bfield_fp[lev][2].get(),
                                                 getParser(Bxfield_parser),
                                                 getParser(Byfield_parser),
                                                 getParser(Bzfield_parser),
                                                 lev);
       if (lev > 0) {
          InitializeExternalFieldsOnGridUsingParser(Bfield_aux[lev][0].get(),
                                                    Bfield_aux[lev][1].get(),
                                                    Bfield_aux[lev][2].get(),
                                                    getParser(Bxfield_parser),
                                                    getParser(Byfield_parser),
                                                    getParser(Bzfield_parser),
                                                    lev);

          InitializeExternalFieldsOnGridUsingParser(Bfield_cp[lev][0].get(),
                                                    Bfield_cp[lev][1].get(),
                                                    Bfield_cp[lev][2].get(),
                                                    getParser(Bxfield_parser),
                                                    getParser(Byfield_parser),
                                                    getParser(Bzfield_parser),
                                                    lev);
       }
    }

    // if the input string for the E-field is "parse_e_ext_grid_function",
    // then the analytical expression or function must be
    // provided in the input file.
    if (E_ext_grid_s == "parse_e_ext_grid_function") {

#ifdef WARPX_DIM_RZ
       amrex::Abort("E and B parser for external fields does not work with RZ -- TO DO");
#endif
       Store_parserString(pp, "Ex_external_grid_function(x,y,z)",
                                                    str_Ex_ext_grid_function);
       Store_parserString(pp, "Ey_external_grid_function(x,y,z)",
                                                    str_Ey_ext_grid_function);
       Store_parserString(pp, "Ez_external_grid_function(x,y,z)",
                                                    str_Ez_ext_grid_function);

       Exfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_Ex_ext_grid_function,{"x","y","z"}));
       Eyfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_Ey_ext_grid_function,{"x","y","z"}));
       Ezfield_parser = std::make_unique<ParserWrapper<3>>(
                                makeParser(str_Ez_ext_grid_function,{"x","y","z"}));

       // Initialize Efield_fp with external function
       InitializeExternalFieldsOnGridUsingParser(Efield_fp[lev][0].get(),
                                                 Efield_fp[lev][1].get(),
                                                 Efield_fp[lev][2].get(),
                                                 getParser(Exfield_parser),
                                                 getParser(Eyfield_parser),
                                                 getParser(Ezfield_parser),
                                                 lev);
       if (lev > 0) {
          InitializeExternalFieldsOnGridUsingParser(Efield_aux[lev][0].get(),
                                                    Efield_aux[lev][1].get(),
                                                    Efield_aux[lev][2].get(),
                                                    getParser(Exfield_parser),
                                                    getParser(Eyfield_parser),
                                                    getParser(Ezfield_parser),
                                                    lev);

          InitializeExternalFieldsOnGridUsingParser(Efield_cp[lev][0].get(),
                                                    Efield_cp[lev][1].get(),
                                                    Efield_cp[lev][2].get(),
                                                    getParser(Exfield_parser),
                                                    getParser(Eyfield_parser),
                                                    getParser(Ezfield_parser),
                                                    lev);
       }
    }

    if (F_fp[lev]) {
        F_fp[lev]->setVal(0.0);
    }

    if (rho_fp[lev]) {
        rho_fp[lev]->setVal(0.0);
    }

    if (F_cp[lev]) {
        F_cp[lev]->setVal(0.0);
    }

    if (rho_cp[lev]) {
        rho_cp[lev]->setVal(0.0);
    }

    if (costs[lev]) {
        for (int i : costs[lev]->IndexArray()) {
            (*costs[lev])[i] = 0.0;
            WarpX::setLoadBalanceEfficiency(lev, -1);
        }
    }
}

void
WarpX::InitializeExternalFieldsOnGridUsingParser (
       MultiFab *mfx, MultiFab *mfy, MultiFab *mfz,
       HostDeviceParser<3> const& xfield_parser, HostDeviceParser<3> const& yfield_parser,
       HostDeviceParser<3> const& zfield_parser, const int lev)
{

    const auto dx_lev = geom[lev].CellSizeArray();
    const RealBox& real_box = geom[lev].ProbDomain();
    amrex::IntVect x_nodal_flag = mfx->ixType().toIntVect();
    amrex::IntVect y_nodal_flag = mfy->ixType().toIntVect();
    amrex::IntVect z_nodal_flag = mfz->ixType().toIntVect();
    for ( MFIter mfi(*mfx, TilingIfNotGPU()); mfi.isValid(); ++mfi)
    {
       const amrex::Box& tbx = mfi.tilebox( x_nodal_flag, mfx->nGrowVect() );
       const amrex::Box& tby = mfi.tilebox( y_nodal_flag, mfy->nGrowVect() );
       const amrex::Box& tbz = mfi.tilebox( z_nodal_flag, mfz->nGrowVect() );

       auto const& mfxfab = mfx->array(mfi);
       auto const& mfyfab = mfy->array(mfi);
       auto const& mfzfab = mfz->array(mfi);

       amrex::ParallelFor (tbx, tby, tbz,
            [=] AMREX_GPU_DEVICE (int i, int j, int k) {
                // Shift required in the x-, y-, or z- position
                // depending on the index type of the multifab
                amrex::Real fac_x = (1._rt - x_nodal_flag[0]) * dx_lev[0] * 0.5_rt;
                amrex::Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
                amrex::Real y = 0._rt;
                amrex::Real fac_z = (1._rt - x_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#else
                amrex::Real fac_y = (1._rt - x_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
                amrex::Real fac_z = (1._rt - x_nodal_flag[2]) * dx_lev[2] * 0.5_rt;
                amrex::Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
                // Initialize the x-component of the field.
                mfxfab(i,j,k) = xfield_parser(x,y,z);
            },
            [=] AMREX_GPU_DEVICE (int i, int j, int k) {
                amrex::Real fac_x = (1._rt - y_nodal_flag[0]) * dx_lev[0] * 0.5_rt;
                amrex::Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
                amrex::Real y = 0._rt;
                amrex::Real fac_z = (1._rt - y_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#elif (AMREX_SPACEDIM==3)
                amrex::Real fac_y = (1._rt - y_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
                amrex::Real fac_z = (1._rt - y_nodal_flag[2]) * dx_lev[2] * 0.5_rt;
                amrex::Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
                // Initialize the y-component of the field.
                mfyfab(i,j,k)  = yfield_parser(x,y,z);
            },
            [=] AMREX_GPU_DEVICE (int i, int j, int k) {
                amrex::Real fac_x = (1._rt - z_nodal_flag[0]) * dx_lev[0] * 0.5_rt;
                amrex::Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
                amrex::Real y = 0._rt;
                amrex::Real fac_z = (1._rt - z_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#elif (AMREX_SPACEDIM==3)
                amrex::Real fac_y = (1._rt - z_nodal_flag[1]) * dx_lev[1] * 0.5_rt;
                amrex::Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
                amrex::Real fac_z = (1._rt - z_nodal_flag[2]) * dx_lev[2] * 0.5_rt;
                amrex::Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
                // Initialize the z-component of the field.
                mfzfab(i,j,k) = zfield_parser(x,y,z);
            }
        );
    }
}

void
WarpX::PerformanceHints ()
{
    // Check requested MPI ranks and available boxes
    amrex::Long total_nboxes = 0; // on all MPI ranks
    for (int ilev = 0; ilev <= finestLevel(); ++ilev) {
        total_nboxes += boxArray(ilev).size();
    }
    if (ParallelDescriptor::NProcs() > total_nboxes)
        amrex::Print() << "\n[Warning] [Performance] Too many resources / too little work!\n"
            << "  It looks like you requested more compute resources than "
            << "there are total number of boxes of cells available ("
            << total_nboxes << "). "
            << "You started with (" << ParallelDescriptor::NProcs()
            << ") MPI ranks, so (" << ParallelDescriptor::NProcs() - total_nboxes
            << ") rank(s) will have no work.\n"
#ifdef AMREX_USE_GPU
            << "  On GPUs, consider using 1-8 boxes per GPU that together fill "
            << "each GPU's memory sufficiently. If you do not rely on dynamic "
            << "load-balancing, then one large box per GPU is ideal.\n"
#endif
            << "  More information:\n"
            << "  https://warpx.readthedocs.io/en/latest/running_cpp/parallelization.html\n";

    // TODO: warn if some ranks have disproportionally more work than all others
    //       tricky: it can be ok to assign "vacuum" boxes to some ranks w/o slowing down
    //               all other ranks; we need to measure this with our load-balancing
    //               routines and issue a warning only of some ranks stall all other ranks
    // TODO: check MPI-rank to GPU ratio (should be 1:1)
    // TODO: check memory per MPI rank, especially if GPUs are underutilized
    // TODO: CPU tiling hints with OpenMP
}