1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
|
#include <WarpX.H>
#include <WarpX_f.H>
#include <BilinearFilter.H>
#include <NCIGodfreyFilter.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>
#ifdef BL_USE_SENSEI_INSITU
#include <AMReX_AmrMeshInSituBridge.H>
#endif
#include <GpuParser.H>
#include <WarpXUtil.H>
using namespace amrex;
void
WarpX::InitData ()
{
BL_PROFILE("WarpX::InitData()");
if (restart_chkfile.empty())
{
ComputeDt();
InitFromScratch();
}
else
{
InitFromCheckpoint();
if (is_synchronized) {
ComputeDt();
}
PostRestart();
}
ComputePMLFactors();
if (WarpX::use_fdtd_nci_corr) {
WarpX::InitNCICorrector();
}
if (WarpX::use_filter) {
WarpX::InitFilter();
}
BuildBufferMasks();
InitDiagnostics();
if (ParallelDescriptor::IOProcessor()) {
std::cout << "\nGrids Summary:\n";
printGridSummary(std::cout, 0, finestLevel());
}
#ifdef BL_USE_SENSEI_INSITU
insitu_bridge = new amrex::AmrMeshInSituBridge;
insitu_bridge->setEnabled(insitu_int > 0 ? 1 : 0);
insitu_bridge->setConfig(insitu_config);
insitu_bridge->setPinMesh(insitu_pin_mesh);
if (insitu_bridge->initialize())
{
amrex::ErrorStream()
<< "WarpX::InitData : Failed to initialize the in situ bridge."
<< std::endl;
amrex::Abort();
}
insitu_bridge->setFrequency(1);
#endif
if (restart_chkfile.empty())
{
if (plot_int > 0)
WritePlotFile();
if (check_int > 0)
WriteCheckPointFile();
if ((insitu_int > 0) && (insitu_start == 0))
UpdateInSitu();
}
}
void
WarpX::InitDiagnostics () {
if (do_back_transformed_diagnostics) {
const Real* current_lo = geom[0].ProbLo();
const Real* current_hi = geom[0].ProbHi();
Real dt_boost = dt[0];
// Find the positions of the lab-frame box that corresponds to the boosted-frame box at t=0
Real zmin_lab = current_lo[moving_window_dir]/( (1.+beta_boost)*gamma_boost );
Real zmax_lab = current_hi[moving_window_dir]/( (1.+beta_boost)*gamma_boost );
myBFD.reset(new BackTransformedDiagnostic(zmin_lab,
zmax_lab,
moving_window_v, dt_snapshots_lab,
num_snapshots_lab,
dt_slice_snapshots_lab,
num_slice_snapshots_lab,
gamma_boost, t_new[0], dt_boost,
moving_window_dir, geom[0],
slice_realbox,
particle_slice_width_lab));
}
}
void
WarpX::InitFromScratch ()
{
const Real time = 0.0;
AmrCore::InitFromScratch(time); // This will call MakeNewLevelFromScratch
mypc->AllocData();
mypc->InitData();
// Loop through species and calculate their space-charge field
for (int ispecies=0; ispecies<mypc->nSpecies(); ispecies++){
WarpXParticleContainer& species = mypc->GetParticleContainer(ispecies);
if (species.initialize_self_fields) {
InitSpaceChargeField(species);
}
}
InitPML();
#ifdef WARPX_DO_ELECTROSTATIC
if (do_electrostatic) {
getLevelMasks(masks);
// the plus one is to convert from num_cells to num_nodes
getLevelMasks(gather_masks, n_buffer + 1);
}
#endif // WARPX_DO_ELECTROSTATIC
}
void
WarpX::InitPML ()
{
if (do_pml)
{
amrex::IntVect do_pml_Lo_corrected = do_pml_Lo;
#ifdef WARPX_DIM_RZ
do_pml_Lo_corrected[0] = 0; // no PML at r=0, in cylindrical geometry
#endif
pml[0].reset(new PML(boxArray(0), DistributionMap(0), &Geom(0), nullptr,
pml_ncell, pml_delta, 0,
#ifdef WARPX_USE_PSATD
dt[0], nox_fft, noy_fft, noz_fft, do_nodal,
#endif
do_dive_cleaning, do_moving_window,
pml_has_particles, do_pml_in_domain,
do_pml_Lo_corrected, do_pml_Hi));
for (int lev = 1; lev <= finest_level; ++lev)
{
amrex::IntVect do_pml_Lo_MR = amrex::IntVect::TheUnitVector();
#ifdef WARPX_DIM_RZ
//In cylindrical geometry, if the edge of the patch is at r=0, do not add PML
if ((max_level > 0) && (fine_tag_lo[0]==0.)) {
do_pml_Lo_MR[0] = 0;
}
#endif
pml[lev].reset(new PML(boxArray(lev), DistributionMap(lev),
&Geom(lev), &Geom(lev-1),
pml_ncell, pml_delta, refRatio(lev-1)[0],
#ifdef WARPX_USE_PSATD
dt[lev], nox_fft, noy_fft, noz_fft, do_nodal,
#endif
do_dive_cleaning, do_moving_window,
pml_has_particles, do_pml_in_domain,
do_pml_Lo_MR, amrex::IntVect::TheUnitVector()));
}
}
}
void
WarpX::ComputePMLFactors ()
{
if (do_pml)
{
for (int lev = 0; lev <= finest_level; ++lev)
{
pml[lev]->ComputePMLFactors(dt[lev]);
}
}
}
void
WarpX::InitNCICorrector ()
{
if (WarpX::use_fdtd_nci_corr)
{
for (int lev = 0; lev <= max_level; ++lev)
{
const Geometry& gm = Geom(lev);
const Real* dx = gm.CellSize();
amrex::Real dz, cdtodz;
if (AMREX_SPACEDIM == 3){
dz = dx[2];
}else{
dz = dx[1];
}
cdtodz = PhysConst::c * dt[lev] / dz;
// Initialize Godfrey filters
// Same filter for fields Ex, Ey and Bz
const bool nodal_gather = (l_lower_order_in_v == 0);
nci_godfrey_filter_exeybz[lev].reset( new NCIGodfreyFilter(godfrey_coeff_set::Ex_Ey_Bz, cdtodz, nodal_gather) );
// Same filter for fields Bx, By and Ez
nci_godfrey_filter_bxbyez[lev].reset( new NCIGodfreyFilter(godfrey_coeff_set::Bx_By_Ez, cdtodz, nodal_gather) );
// Compute Godfrey filters stencils
nci_godfrey_filter_exeybz[lev]->ComputeStencils();
nci_godfrey_filter_bxbyez[lev]->ComputeStencils();
}
}
}
void
WarpX::InitFilter (){
if (WarpX::use_filter){
WarpX::bilinear_filter.npass_each_dir = WarpX::filter_npass_each_dir;
WarpX::bilinear_filter.ComputeStencils();
}
}
void
WarpX::PostRestart ()
{
#ifdef WARPX_USE_PSATD
amrex::Abort("WarpX::PostRestart: TODO for PSATD");
#endif
mypc->PostRestart();
}
void
WarpX::InitLevelData (int lev, Real time)
{
ParmParse pp("warpx");
// default values of E_external_grid and B_external_grid
// are used to set the E and B field when "constant" or
// "parser" is not explicitly used in the input.
pp.query("B_ext_grid_init_style", B_ext_grid_s);
std::transform(B_ext_grid_s.begin(),
B_ext_grid_s.end(),
B_ext_grid_s.begin(),
::tolower);
pp.query("E_ext_grid_init_style", E_ext_grid_s);
std::transform(E_ext_grid_s.begin(),
E_ext_grid_s.end(),
E_ext_grid_s.begin(),
::tolower);
// if the input string is "constant", the values for the
// external grid must be provided in the input.
if (B_ext_grid_s == "constant")
pp.getarr("B_external_grid", B_external_grid);
// if the input string is "constant", the values for the
// external grid must be provided in the input.
if (E_ext_grid_s == "constant")
pp.getarr("E_external_grid", E_external_grid);
for (int i = 0; i < 3; ++i) {
current_fp[lev][i]->setVal(0.0);
if (lev > 0)
current_cp[lev][i]->setVal(0.0);
if (B_ext_grid_s == "constant" || B_ext_grid_s == "default") {
Bfield_fp[lev][i]->setVal(B_external_grid[i]);
if (lev > 0) {
Bfield_aux[lev][i]->setVal(B_external_grid[i]);
Bfield_cp[lev][i]->setVal(B_external_grid[i]);
}
}
if (E_ext_grid_s == "constant" || E_ext_grid_s == "default") {
Efield_fp[lev][i]->setVal(E_external_grid[i]);
if (lev > 0) {
Efield_aux[lev][i]->setVal(E_external_grid[i]);
Efield_cp[lev][i]->setVal(E_external_grid[i]);
}
}
}
// if the input string for the B-field is "parse_b_ext_grid_function",
// then the analytical expression or function must be
// provided in the input file.
if (B_ext_grid_s == "parse_b_ext_grid_function") {
#ifdef WARPX_DIM_RZ
amrex::Abort("E and B parser for external fields does not work with RZ -- TO DO");
#endif
Store_parserString(pp, "Bx_external_grid_function(x,y,z)",
str_Bx_ext_grid_function);
Store_parserString(pp, "By_external_grid_function(x,y,z)",
str_By_ext_grid_function);
Store_parserString(pp, "Bz_external_grid_function(x,y,z)",
str_Bz_ext_grid_function);
Bxfield_parser.reset(new ParserWrapper(
makeParser(str_Bx_ext_grid_function)));
Byfield_parser.reset(new ParserWrapper(
makeParser(str_By_ext_grid_function)));
Bzfield_parser.reset(new ParserWrapper(
makeParser(str_Bz_ext_grid_function)));
// Initialize Bfield_fp with external function
InitializeExternalFieldsOnGridUsingParser(Bfield_fp[lev][0].get(),
Bfield_fp[lev][1].get(),
Bfield_fp[lev][2].get(),
Bxfield_parser.get(),
Byfield_parser.get(),
Bzfield_parser.get(),
Bx_nodal_flag, By_nodal_flag,
Bz_nodal_flag, lev);
if (lev > 0) {
InitializeExternalFieldsOnGridUsingParser(Bfield_aux[lev][0].get(),
Bfield_aux[lev][1].get(),
Bfield_aux[lev][2].get(),
Bxfield_parser.get(),
Byfield_parser.get(),
Bzfield_parser.get(),
Bx_nodal_flag, By_nodal_flag,
Bz_nodal_flag, lev);
InitializeExternalFieldsOnGridUsingParser(Bfield_cp[lev][0].get(),
Bfield_cp[lev][1].get(),
Bfield_cp[lev][2].get(),
Bxfield_parser.get(),
Byfield_parser.get(),
Bzfield_parser.get(),
Bx_nodal_flag, By_nodal_flag,
Bz_nodal_flag, lev);
}
}
// if the input string for the E-field is "parse_e_ext_grid_function",
// then the analytical expression or function must be
// provided in the input file.
if (E_ext_grid_s == "parse_e_ext_grid_function") {
#ifdef WARPX_DIM_RZ
amrex::Abort("E and B parser for external fields does not work with RZ -- TO DO");
#endif
Store_parserString(pp, "Ex_external_grid_function(x,y,z)",
str_Ex_ext_grid_function);
Store_parserString(pp, "Ey_external_grid_function(x,y,z)",
str_Ey_ext_grid_function);
Store_parserString(pp, "Ez_external_grid_function(x,y,z)",
str_Ez_ext_grid_function);
Exfield_parser.reset(new ParserWrapper(
makeParser(str_Ex_ext_grid_function)));
Eyfield_parser.reset(new ParserWrapper(
makeParser(str_Ey_ext_grid_function)));
Ezfield_parser.reset(new ParserWrapper(
makeParser(str_Ez_ext_grid_function)));
// Initialize Efield_fp with external function
InitializeExternalFieldsOnGridUsingParser(Efield_fp[lev][0].get(),
Efield_fp[lev][1].get(),
Efield_fp[lev][2].get(),
Exfield_parser.get(),
Eyfield_parser.get(),
Ezfield_parser.get(),
Ex_nodal_flag, Ey_nodal_flag,
Ez_nodal_flag, lev);
if (lev > 0) {
InitializeExternalFieldsOnGridUsingParser(Efield_aux[lev][0].get(),
Efield_aux[lev][1].get(),
Efield_aux[lev][2].get(),
Exfield_parser.get(),
Eyfield_parser.get(),
Ezfield_parser.get(),
Ex_nodal_flag, Ey_nodal_flag,
Ez_nodal_flag, lev);
InitializeExternalFieldsOnGridUsingParser(Efield_cp[lev][0].get(),
Efield_cp[lev][1].get(),
Efield_cp[lev][2].get(),
Exfield_parser.get(),
Eyfield_parser.get(),
Ezfield_parser.get(),
Ex_nodal_flag, Ey_nodal_flag,
Ez_nodal_flag, lev);
}
}
if (F_fp[lev]) {
F_fp[lev]->setVal(0.0);
}
if (rho_fp[lev]) {
rho_fp[lev]->setVal(0.0);
}
if (F_cp[lev]) {
F_cp[lev]->setVal(0.0);
}
if (rho_cp[lev]) {
rho_cp[lev]->setVal(0.0);
}
if (costs[lev]) {
costs[lev]->setVal(0.0);
}
}
#ifdef WARPX_USE_PSATD_HYBRID
void
WarpX::InitLevelDataFFT (int lev, Real time)
{
Efield_fp_fft[lev][0]->setVal(0.0);
Efield_fp_fft[lev][1]->setVal(0.0);
Efield_fp_fft[lev][2]->setVal(0.0);
Bfield_fp_fft[lev][0]->setVal(0.0);
Bfield_fp_fft[lev][1]->setVal(0.0);
Bfield_fp_fft[lev][2]->setVal(0.0);
current_fp_fft[lev][0]->setVal(0.0);
current_fp_fft[lev][1]->setVal(0.0);
current_fp_fft[lev][2]->setVal(0.0);
rho_fp_fft[lev]->setVal(0.0);
if (lev > 0)
{
Efield_cp_fft[lev][0]->setVal(0.0);
Efield_cp_fft[lev][1]->setVal(0.0);
Efield_cp_fft[lev][2]->setVal(0.0);
Bfield_cp_fft[lev][0]->setVal(0.0);
Bfield_cp_fft[lev][1]->setVal(0.0);
Bfield_cp_fft[lev][2]->setVal(0.0);
current_cp_fft[lev][0]->setVal(0.0);
current_cp_fft[lev][1]->setVal(0.0);
current_cp_fft[lev][2]->setVal(0.0);
rho_cp_fft[lev]->setVal(0.0);
}
}
#endif
void
WarpX::InitializeExternalFieldsOnGridUsingParser (
MultiFab *mfx, MultiFab *mfy, MultiFab *mfz,
ParserWrapper *xfield_parser, ParserWrapper *yfield_parser,
ParserWrapper *zfield_parser, IntVect x_nodal_flag,
IntVect y_nodal_flag, IntVect z_nodal_flag,
const int lev)
{
const auto dx_lev = geom[lev].CellSizeArray();
const RealBox& real_box = geom[lev].ProbDomain();
for ( MFIter mfi(*mfx, TilingIfNotGPU()); mfi.isValid(); ++mfi)
{
const Box& tbx = mfi.tilebox(x_nodal_flag);
const Box& tby = mfi.tilebox(y_nodal_flag);
const Box& tbz = mfi.tilebox(z_nodal_flag);
auto const& mfxfab = mfx->array(mfi);
auto const& mfyfab = mfy->array(mfi);
auto const& mfzfab = mfz->array(mfi);
auto const& mfx_IndexType = (*mfx).ixType();
auto const& mfy_IndexType = (*mfy).ixType();
auto const& mfz_IndexType = (*mfz).ixType();
// Initialize IntVect based on the index type of multiFab
// 0 if cell-centered, 1 if node-centered.
IntVect mfx_type(AMREX_D_DECL(0,0,0));
IntVect mfy_type(AMREX_D_DECL(0,0,0));
IntVect mfz_type(AMREX_D_DECL(0,0,0));
for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
mfx_type[idim] = mfx_IndexType.nodeCentered(idim);
mfy_type[idim] = mfy_IndexType.nodeCentered(idim);
mfz_type[idim] = mfz_IndexType.nodeCentered(idim);
}
amrex::ParallelFor (tbx, tby, tbz,
[=] AMREX_GPU_DEVICE (int i, int j, int k) {
// Shift required in the x-, y-, or z- position
// depending on the index type of the multifab
Real fac_x = (1.0 - mfx_type[0]) * dx_lev[0]*0.5;
Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
Real y = 0.0;
Real fac_z = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#else
Real fac_y = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
Real fac_z = (1.0 - mfx_type[2]) * dx_lev[2]*0.5;
Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
// Initialize the x-component of the field.
mfxfab(i,j,k) = xfield_parser->getField(x,y,z);
},
[=] AMREX_GPU_DEVICE (int i, int j, int k) {
Real fac_x = (1.0 - mfy_type[0]) * dx_lev[0]*0.5;
Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
Real y = 0.0;
Real fac_z = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#elif (AMREX_SPACEDIM==3)
Real fac_y = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
Real fac_z = (1.0 - mfx_type[2]) * dx_lev[2]*0.5;
Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
// Initialize the y-component of the field.
mfyfab(i,j,k) = yfield_parser->getField(x,y,z);
},
[=] AMREX_GPU_DEVICE (int i, int j, int k) {
Real fac_x = (1.0 - mfz_type[0]) * dx_lev[0]*0.5;
Real x = i*dx_lev[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
Real y = 0.0;
Real fac_z = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real z = j*dx_lev[1] + real_box.lo(1) + fac_z;
#elif (AMREX_SPACEDIM==3)
Real fac_y = (1.0 - mfx_type[1]) * dx_lev[1]*0.5;
Real y = j*dx_lev[1] + real_box.lo(1) + fac_y;
Real fac_z = (1.0 - mfz_type[2]) * dx_lev[2]*0.5;
Real z = k*dx_lev[2] + real_box.lo(2) + fac_z;
#endif
// Initialize the z-component of the field.
mfzfab(i,j,k) = zfield_parser->getField(x,y,z);
},
/* To allocate shared memory for the GPU threads. */
/* But, for now only 4 doubles (x,y,z,t) are allocated. */
amrex::Gpu::numThreadsPerBlockParallelFor() * sizeof(double) * 4
);
}
}
|