aboutsummaryrefslogtreecommitdiff
path: root/Source/LaserParticleContainer.cpp
blob: 6ee79e9aa21343e9429a4d8f1a01b8790b4bab4a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

#include <limits>
#include <cmath>
#include <algorithm>
#include <numeric>

#include <WarpX.H>
#include <WarpXConst.H>
#include <WarpX_f.H>
#include <ParticleContainer.H>

using namespace amrex;

namespace
{
    Vector<Real> CrossProduct (const Vector<Real>& a, const Vector<Real>& b)
    {
	return { a[1]*b[2]-a[2]*b[1],  a[2]*b[0]-a[0]*b[2],  a[0]*b[1]-a[1]*b[0] };
    }
}

LaserParticleContainer::LaserParticleContainer (AmrCore* amr_core, int ispecies)
    : WarpXParticleContainer(amr_core, ispecies)
{
    charge = 1.0;
    mass = std::numeric_limits<Real>::max();

    if (WarpX::use_laser)
    {
	ParmParse pp("laser");

	// Parse the type of laser profile and set the corresponding flag `profile`
	std::string laser_type_s;
	pp.get("profile", laser_type_s);
	std::transform(laser_type_s.begin(), laser_type_s.end(), laser_type_s.begin(), ::tolower);
	if (laser_type_s == "gaussian") {
	    profile = laser_t::Gaussian;
  } else if(laser_type_s == "harris") {
      profile = laser_t::Harris;
  } else if(laser_type_s == "parse_field_function") {
      profile = laser_t::parse_field_function;
	} else {
	    amrex::Abort("Unknown laser type");
	}

	// Parse the properties of the antenna
	pp.getarr("position", position);
	pp.getarr("direction", nvec);
	pp.getarr("polarization", p_X);
	pp.query("pusher_algo", pusher_algo);
	pp.get("wavelength", wavelength);
	pp.get("e_max", e_max);

	if ( profile == laser_t::Gaussian ) {
	    // Parse the properties of the Gaussian profile
	   pp.get("profile_waist", profile_waist);
	   pp.get("profile_duration", profile_duration);
	   pp.get("profile_t_peak", profile_t_peak);
	   pp.get("profile_focal_distance", profile_focal_distance);
	   stc_direction = p_X;
	   pp.queryarr("stc_direction", stc_direction);
	   pp.query("zeta", zeta);
	   pp.query("beta", beta);
	   pp.query("phi2", phi2);
	}

  if ( profile == laser_t::Harris ) {
    // Parse the properties of the Harris profile
    pp.get("profile_waist", profile_waist);
    pp.get("profile_duration", profile_duration);
    pp.get("profile_focal_distance", profile_focal_distance);
  }

  if ( profile == laser_t::parse_field_function ) {
    // Parse the properties of the parse_field_function profile
    pp.get("field_function(X,Y,t)", field_function);
    // User-defined constants: replace names by value
    my_constants.ReadParameters();
    field_function = my_constants.replaceStringValue(field_function);
    // Pass math expression and list of variables to Fortran as char*
    const std::string s_var = "X,Y,t";
    parser_instance_number = parser_initialize_function(field_function.c_str(),
                                                        field_function.length(),
                                                        s_var.c_str(),
                                                        s_var.length());
  }

	// Plane normal
	Real s = 1.0/std::sqrt(nvec[0]*nvec[0] + nvec[1]*nvec[1] + nvec[2]*nvec[2]);
	nvec = { nvec[0]*s, nvec[1]*s, nvec[2]*s };

    if (WarpX::gamma_boost > 1.) {
        // Check that the laser direction is equal to the boost direction
        AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
            nvec[0]*WarpX::boost_direction[0]
          + nvec[1]*WarpX::boost_direction[1]
          + nvec[2]*WarpX::boost_direction[2] - 1. < 1.e-12,
          "The Lorentz boost should be in the same direction as the laser propagation");
        // Get the position of the plane, along the boost direction, in the lab frame
        // and convert the position of the antenna to the boosted frame
        Z0_lab = nvec[0]*position[0] + nvec[1]*position[1] + nvec[2]*position[2];
        Real Z0_boost = Z0_lab/WarpX::gamma_boost;
        position[0] += (Z0_boost-Z0_lab)*nvec[0];
        position[1] += (Z0_boost-Z0_lab)*nvec[1];
        position[2] += (Z0_boost-Z0_lab)*nvec[2];
    }

	// The first polarization vector
	s = 1.0/std::sqrt(p_X[0]*p_X[0] + p_X[1]*p_X[1] + p_X[2]*p_X[2]);
	p_X = { p_X[0]*s, p_X[1]*s, p_X[2]*s };

	Real dp = std::inner_product(nvec.begin(), nvec.end(), p_X.begin(), 0.0);
        AMREX_ALWAYS_ASSERT_WITH_MESSAGE(std::abs(dp) < 1.0e-14,
            "Laser plane vector is not perpendicular to the main polarization vector");

	p_Y = CrossProduct(nvec, p_X);   // The second polarization vector

	s = 1.0/std::sqrt(stc_direction[0]*stc_direction[0] + stc_direction[1]*stc_direction[1] + stc_direction[2]*stc_direction[2]);
	stc_direction = { stc_direction[0]*s, stc_direction[1]*s, stc_direction[2]*s };
	dp = std::inner_product(nvec.begin(), nvec.end(), stc_direction.begin(), 0.0);
        AMREX_ALWAYS_ASSERT_WITH_MESSAGE(std::abs(dp) < 1.0e-14,
            "stc_direction is not perpendicular to the laser plane vector");

	// Get angle between p_X and stc_direction
	// in 2d, stcs are in the simulation plane
#if AMREX_SPACEDIM == 3
	theta_stc = acos(stc_direction[0]*p_X[0] +
			 stc_direction[1]*p_X[1] +
			 stc_direction[2]*p_X[2]);
#else
	theta_stc = 0.;
#endif

#if AMREX_SPACEDIM == 3
	u_X = p_X;
	u_Y = p_Y;
#else
	u_X = CrossProduct({0., 1., 0.}, nvec);
	u_Y = {0., 1., 0.};
#endif

        prob_domain = Geometry::ProbDomain();
        {
            Vector<Real> lo, hi;
            if (pp.queryarr("prob_lo", lo)) {
                prob_domain.setLo(lo);
            }
            if (pp.queryarr("prob_hi", hi)) {
                prob_domain.setHi(hi);
            }
        }
    }
}

void
LaserParticleContainer::InitData ()
{
    InitData(maxLevel());
}

void
LaserParticleContainer::InitData (int lev)
{
    // spacing of laser particles in the laser plane.
    // has to be done after geometry is set up.
    Real S_X, S_Y;
    ComputeSpacing(lev, S_X, S_Y);
    ComputeWeightMobility(S_X, S_Y);

    auto Transform = [&](int i, int j) -> Vector<Real>
    {
#if (AMREX_SPACEDIM == 3)
	return { position[0] + (S_X*(i+0.5))*u_X[0] + (S_Y*(j+0.5))*u_Y[0],
		 position[1] + (S_X*(i+0.5))*u_X[1] + (S_Y*(j+0.5))*u_Y[1],
		 position[2] + (S_X*(i+0.5))*u_X[2] + (S_Y*(j+0.5))*u_Y[2] };
#else
	return { position[0] + (S_X*(i+0.5))*u_X[0],
		 0.0,
		 position[2] + (S_X*(i+0.5))*u_X[2] };
#endif
    };

    // Given the "lab" frame coordinates, return the real coordinates in the laser plane coordinates
    auto InverseTransform = [&](const Vector<Real>& pos) -> Vector<Real>
    {
#if (AMREX_SPACEDIM == 3)
	return {u_X[0]*(pos[0]-position[0])+u_X[1]*(pos[1]-position[1])+u_X[2]*(pos[2]-position[2]),
		u_Y[0]*(pos[0]-position[0])+u_Y[1]*(pos[1]-position[1])+u_Y[2]*(pos[2]-position[2])};
#else
	return {u_X[0]*(pos[0]-position[0])+u_X[2]*(pos[2]-position[2]), 0.0};
#endif
    };

    Vector<int> plane_lo(2, std::numeric_limits<int>::max());
    Vector<int> plane_hi(2, std::numeric_limits<int>::min());
    {
	auto compute_min_max = [&](Real x, Real y, Real z)
	{
	    const Vector<Real>& pos_plane = InverseTransform({x, y, z});
	    int i = pos_plane[0]/S_X;
	    int j = pos_plane[1]/S_Y;
	    plane_lo[0] = std::min(plane_lo[0], i);
	    plane_lo[1] = std::min(plane_lo[1], j);
	    plane_hi[0] = std::max(plane_hi[0], i);
	    plane_hi[1] = std::max(plane_hi[1], j);
	};

	const Real* prob_lo = prob_domain.lo();
	const Real* prob_hi = prob_domain.hi();
#if (AMREX_SPACEDIM == 3)
	compute_min_max(prob_lo[0], prob_lo[1], prob_lo[2]);
	compute_min_max(prob_hi[0], prob_lo[1], prob_lo[2]);
	compute_min_max(prob_lo[0], prob_hi[1], prob_lo[2]);
	compute_min_max(prob_hi[0], prob_hi[1], prob_lo[2]);
	compute_min_max(prob_lo[0], prob_lo[1], prob_hi[2]);
	compute_min_max(prob_hi[0], prob_lo[1], prob_hi[2]);
	compute_min_max(prob_lo[0], prob_hi[1], prob_hi[2]);
	compute_min_max(prob_hi[0], prob_hi[1], prob_hi[2]);
#else
	compute_min_max(prob_lo[0], 0.0, prob_lo[1]);
	compute_min_max(prob_hi[0], 0.0, prob_lo[1]);
	compute_min_max(prob_lo[0], 0.0, prob_hi[1]);
	compute_min_max(prob_hi[0], 0.0, prob_hi[1]);
#endif
    }

    const int nprocs = ParallelDescriptor::NProcs();
    const int myproc = ParallelDescriptor::MyProc();

#if (AMREX_SPACEDIM == 3)
    const Box plane_box {IntVect(plane_lo[0],plane_lo[1],0),
                         IntVect(plane_hi[0],plane_hi[1],0)};
    BoxArray plane_ba {plane_box};
    {
	IntVect chunk(plane_box.size());
	const int min_size = 8;
	while (plane_ba.size() < nprocs && chunk[0] > min_size && chunk[1] > min_size)
	{
	    for (int j = 1; j >= 0 ; j--)
	    {
		chunk[j] /= 2;

		if (plane_ba.size() < nprocs) {
		    plane_ba.maxSize(chunk);
		}
	    }
	}
    }
#else
    BoxArray plane_ba { Box {IntVect(plane_lo[0],0), IntVect(plane_hi[0],0)} };
#endif

    RealVector particle_x, particle_y, particle_z, particle_w;

    const DistributionMapping plane_dm {plane_ba, nprocs};
    const Vector<int>& procmap = plane_dm.ProcessorMap();
    for (int i = 0, n = plane_ba.size(); i < n; ++i)
    {
	if (procmap[i] == myproc)
	{
	    const Box& bx = plane_ba[i];
	    for (IntVect cell = bx.smallEnd(); cell <= bx.bigEnd(); bx.next(cell))
	    {
		const Vector<Real>& pos = Transform(cell[0], cell[1]);
#if (AMREX_SPACEDIM == 3)
		const Real* x = pos.dataPtr();
#else
		const Real x[2] = {pos[0], pos[2]};
#endif
		if (prob_domain.contains(x))
		{
		    for (int k = 0; k<2; ++k) {
			particle_x.push_back(pos[0]);
			particle_y.push_back(pos[1]);
			particle_z.push_back(pos[2]);
		    }
		    particle_w.push_back( weight);
		    particle_w.push_back(-weight);
		}
	    }
	}
    }
    const int np = particle_z.size();
    RealVector particle_ux(np, 0.0);
    RealVector particle_uy(np, 0.0);
    RealVector particle_uz(np, 0.0);

    if (Verbose()) amrex::Print() << "Adding laser particles\n";
    AddNParticles(lev,
                  np, particle_x.dataPtr(), particle_y.dataPtr(), particle_z.dataPtr(),
		  particle_ux.dataPtr(), particle_uy.dataPtr(), particle_uz.dataPtr(),
		  1, particle_w.dataPtr(), 1);
}

void
LaserParticleContainer::Evolve (int lev,
				const MultiFab&, const MultiFab&, const MultiFab&,
				const MultiFab&, const MultiFab&, const MultiFab&,
				MultiFab& jx, MultiFab& jy, MultiFab& jz,
                                MultiFab* cjx, MultiFab* cjy, MultiFab* cjz,
                                MultiFab* rho, MultiFab* crho,
                                const MultiFab*, const MultiFab*, const MultiFab*,
                                const MultiFab*, const MultiFab*, const MultiFab*,
                                Real t, Real dt)
{
    BL_PROFILE("Laser::Evolve()");
    BL_PROFILE_VAR_NS("Laser::Evolve::Copy", blp_copy);
    BL_PROFILE_VAR_NS("PICSAR::LaserParticlePush", blp_pxr_pp);
    BL_PROFILE_VAR_NS("PICSAR::LaserCurrentDepo", blp_pxr_cd);
    BL_PROFILE_VAR_NS("Laser::Evolve::Accumulate", blp_accumulate);

    Real t_lab = t;
    if (WarpX::gamma_boost > 1) {
        // Convert time from the boosted to the lab-frame
        // (in order to later calculate the amplitude of the field,
        // at the position of the antenna, in the lab-frame)
        t_lab = 1./WarpX::gamma_boost*t + WarpX::beta_boost*Z0_lab/PhysConst::c;
    }

    BL_ASSERT(OnSameGrids(lev,jx));

    MultiFab* cost = WarpX::getCosts(lev);

#ifdef _OPENMP
#pragma omp parallel
#endif
    {
#ifdef _OPENMP
      int thread_num = omp_get_thread_num();
#else
      int thread_num = 0;
#endif

      if (local_rho[thread_num] == nullptr) local_rho[thread_num].reset( new amrex::FArrayBox());
      if (local_jx[thread_num]  == nullptr) local_jx[thread_num].reset( new amrex::FArrayBox());
      if (local_jy[thread_num]  == nullptr) local_jy[thread_num].reset(  new amrex::FArrayBox());
      if (local_jz[thread_num]  == nullptr) local_jz[thread_num].reset(  new amrex::FArrayBox());

        Cuda::DeviceVector<Real> plane_Xp, plane_Yp, amplitude_E;

        for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
	{
            Real wt = amrex::second();

	    const Box& box = pti.validbox();

            auto& attribs = pti.GetAttribs();

            auto&  wp = attribs[PIdx::w ];
            auto& uxp = attribs[PIdx::ux];
            auto& uyp = attribs[PIdx::uy];
            auto& uzp = attribs[PIdx::uz];

	    const long np  = pti.numParticles();
            // For now, laser particles do not take the current buffers into account
            const long np_current = np;

            m_giv[thread_num].resize(np);

               plane_Xp.resize(np);
               plane_Yp.resize(np);
            amplitude_E.resize(np);

	    //
	    // copy data from particle container to temp arrays
	    //
	    BL_PROFILE_VAR_START(blp_copy);
            pti.GetPosition(m_xp[thread_num], m_yp[thread_num], m_zp[thread_num]);
	    BL_PROFILE_VAR_STOP(blp_copy);

            if (rho) DepositCharge(pti, wp, rho, crho, 0, np_current, np, thread_num, lev);

	    //
	    // Particle Push
	    //
	    BL_PROFILE_VAR_START(blp_pxr_pp);
            // Find the coordinates of the particles in the emission plane
            calculate_laser_plane_coordinates( &np,
                m_xp[thread_num].dataPtr(),
                m_yp[thread_num].dataPtr(),
                m_zp[thread_num].dataPtr(),
                plane_Xp.dataPtr(), plane_Yp.dataPtr(),
                &u_X[0], &u_X[1], &u_X[2], &u_Y[0], &u_Y[1], &u_Y[2],
                &position[0], &position[1], &position[2] );
	    // Calculate the laser amplitude to be emitted,
	    // at the position of the emission plane
	    if (profile == laser_t::Gaussian) {
		warpx_gaussian_laser( &np, plane_Xp.dataPtr(), plane_Yp.dataPtr(),
				      &t_lab, &wavelength, &e_max, &profile_waist, &profile_duration,
				      &profile_t_peak, &profile_focal_distance, amplitude_E.dataPtr(),
				      &zeta, &beta, &phi2, &theta_stc );
	    }

            if (profile == laser_t::Harris) {
		warpx_harris_laser( &np, plane_Xp.dataPtr(), plane_Yp.dataPtr(),
                                    &t, &wavelength, &e_max, &profile_waist, &profile_duration,
                                    &profile_focal_distance, amplitude_E.dataPtr() );
	    }

            if (profile == laser_t::parse_field_function) {
		parse_function_laser( &np, plane_Xp.dataPtr(), plane_Yp.dataPtr(), &t,
				      amplitude_E.dataPtr(), parser_instance_number );
	    }
	    // Calculate the corresponding momentum and position for the particles
            update_laser_particle(
               &np,
               m_xp[thread_num].dataPtr(),
               m_yp[thread_num].dataPtr(),
               m_zp[thread_num].dataPtr(),
               uxp.dataPtr(), uyp.dataPtr(), uzp.dataPtr(),
               m_giv[thread_num].dataPtr(),
               wp.dataPtr(), amplitude_E.dataPtr(), &p_X[0], &p_X[1], &p_X[2],
               &nvec[0], &nvec[1], &nvec[2], &mobility, &dt,
               &PhysConst::c, &WarpX::beta_boost, &WarpX::gamma_boost );
	    BL_PROFILE_VAR_STOP(blp_pxr_pp);

	    //
	    // Current Deposition
	    //
            DepositCurrent(pti, wp, uxp, uyp, uzp, jx, jy, jz,
                           cjx, cjy, cjz, np_current, np, thread_num, lev, dt);

	    //
	    // copy particle data back
	    //
	    BL_PROFILE_VAR_START(blp_copy);
            pti.SetPosition(m_xp[thread_num], m_yp[thread_num], m_zp[thread_num]);
            BL_PROFILE_VAR_STOP(blp_copy);

            if (rho) DepositCharge(pti, wp, rho, crho, 1, np_current, np, thread_num, lev);

            if (cost) {
                const Box& tbx = pti.tilebox();
                wt = (amrex::second() - wt) / tbx.d_numPts();
                (*cost)[pti].plus(wt, tbx);
            }
	}
    }
}

void
LaserParticleContainer::PostRestart ()
{
    Real Sx, Sy;
    const int lev = finestLevel();
    ComputeSpacing(lev, Sx, Sy);
    ComputeWeightMobility(Sx, Sy);
}

void
LaserParticleContainer::ComputeSpacing (int lev, Real& Sx, Real& Sy) const
{
    const std::array<Real,3>& dx = WarpX::CellSize(lev);

    const Real eps = dx[0]*1.e-50;
#if (AMREX_SPACEDIM == 3)
    Sx = std::min(std::min(dx[0]/(std::abs(u_X[0])+eps),
			   dx[1]/(std::abs(u_X[1])+eps)),
		           dx[2]/(std::abs(u_X[2])+eps));
    Sy = std::min(std::min(dx[0]/(std::abs(u_Y[0])+eps),
			   dx[1]/(std::abs(u_Y[1])+eps)),
		           dx[2]/(std::abs(u_Y[2])+eps));
#else
    Sx = std::min(dx[0]/(std::abs(u_X[0])+eps),
		  dx[2]/(std::abs(u_X[2])+eps));
    Sy = 1.0;
#endif
}

void
LaserParticleContainer::ComputeWeightMobility (Real Sx, Real Sy)
{
    constexpr Real eps = 0.01;
    constexpr Real fac = 1.0/(2.0*3.1415926535897932*PhysConst::mu0*PhysConst::c*PhysConst::c*eps);
    weight = fac * wavelength * Sx * Sy / std::min(Sx,Sy) * e_max;

    // The mobility is the constant of proportionality between the field to
    // be emitted, and the corresponding velocity that the particles need to have.
    mobility = (Sx * Sy)/(weight * PhysConst::mu0 * PhysConst::c * PhysConst::c);
    // When running in the boosted-frame, the input parameters (and in particular
    // the amplitude of the field) are given in the lab-frame.
    // Therefore, the mobility needs to be modified by a factor WarpX::gamma_boost.
    mobility = mobility/WarpX::gamma_boost;
}

void
LaserParticleContainer::PushP (int lev, Real dt,
                               const MultiFab&, const MultiFab&, const MultiFab&,
                               const MultiFab&, const MultiFab&, const MultiFab&)
{
    // I don't think we need to do anything.
}