aboutsummaryrefslogtreecommitdiff
path: root/Source/Particles/Deposition/CurrentDeposition.H
blob: 9b9853902f3b6b0c1fdf568a0ede1cab84fc60a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#ifndef CURRENTDEPOSITION_H_
#define CURRENTDEPOSITION_H_

#include "ShapeFactors.H"

/* \brief Current Deposition for thread thread_num
 * /param xp, yp, zp   : Pointer to arrays of particle positions.
 * \param wp           : Pointer to array of particle weights.
 * \param uxp uyp uzp  : Pointer to arrays of particle momentum.
 * \param jx_arr       : Array4 of current density, either full array or tile.
 * \param jy_arr       : Array4 of current density, either full array or tile.
 * \param jz_arr       : Array4 of current density, either full array or tile.
 * \param np_to_depose : Number of particles for which current is deposited.
 * \param dt           : Time step for particle level
 * \param dx           : 3D cell size
 * \param xyzmin       : Physical lower bounds of domain.
 * \param lo           : Index lower bounds of domain.
 * \param stagger_shift: 0 if nodal, 0.5 if staggered.
 * /param q            : species charge.
 */
template <int depos_order>
void doDepositionShapeN(const amrex::Real * const xp, 
                        const amrex::Real * const yp, 
                        const amrex::Real * const zp,
                        const amrex::Real * const wp,
                        const amrex::Real * const uxp,
                        const amrex::Real * const uyp,
                        const amrex::Real * const uzp,
                        const amrex::Array4<amrex::Real>& jx_arr,
                        const amrex::Array4<amrex::Real>& jy_arr,
                        const amrex::Array4<amrex::Real>& jz_arr,
                        const long np_to_depose, const amrex::Real dt,
                        const std::array<amrex::Real,3>& dx,
                        const std::array<amrex::Real, 3> xyzmin,
                        const amrex::Dim3 lo,
                        const amrex::Real stagger_shift, 
                        const amrex::Real q)
{
    const amrex::Real dxi = 1.0/dx[0];
    const amrex::Real dzi = 1.0/dx[2];
    const amrex::Real dts2dx = 0.5*dt*dxi;
    const amrex::Real dts2dz = 0.5*dt*dzi;
#if (AMREX_SPACEDIM == 2)
    const amrex::Real invvol = dxi*dzi;
#else // (AMREX_SPACEDIM == 3)
    const amrex::Real dyi = 1.0/dx[1];
    const amrex::Real dts2dy = 0.5*dt*dyi;
    const amrex::Real invvol = dxi*dyi*dzi;
#endif

    const amrex::Real xmin = xyzmin[0];
    const amrex::Real ymin = xyzmin[1];
    const amrex::Real zmin = xyzmin[2];
    const amrex::Real clightsq = 1.0/PhysConst::c/PhysConst::c;

    // Loop over particles and deposit into jx_arr, jy_arr and jz_arr
    amrex::ParallelFor(
        np_to_depose,
        [=] AMREX_GPU_DEVICE (long ip) {
            // --- Get particle quantities
            const amrex::Real gaminv = 1.0/std::sqrt(1.0 + uxp[ip]*uxp[ip]*clightsq
                                                     + uyp[ip]*uyp[ip]*clightsq
                                                     + uzp[ip]*uzp[ip]*clightsq);
            const amrex::Real wq  = q*wp[ip];
            const amrex::Real vx  = uxp[ip]*gaminv;
            const amrex::Real vy  = uyp[ip]*gaminv;
            const amrex::Real vz  = uzp[ip]*gaminv;
            // wqx, wqy wqz are particle current in each direction 
            const amrex::Real wqx = wq*invvol*vx;
            const amrex::Real wqy = wq*invvol*vy;
            const amrex::Real wqz = wq*invvol*vz;

            // --- Compute shape factors
            // x direction
            // Get particle position after 1/2 push back in position
            const amrex::Real xmid = (xp[ip]-xmin)*dxi-dts2dx*vx;
            // Compute shape factors for node-centered quantities
            amrex::Real AMREX_RESTRICT sx [depos_order + 1];
            // j: leftmost grid point (node-centered) that the particle touches
            const int j  = compute_shape_factor<depos_order>(sx,  xmid);
            // Compute shape factors for cell-centered quantities
            amrex::Real AMREX_RESTRICT sx0[depos_order + 1];
            // j0: leftmost grid point (cell-centered) that the particle touches
            const int j0 = compute_shape_factor<depos_order>(sx0, xmid-stagger_shift);
                     
#if (AMREX_SPACEDIM == 3)
            // y direction
            const amrex::Real ymid= (yp[ip]-ymin)*dyi-dts2dy*vy;
            amrex::Real AMREX_RESTRICT sy [depos_order + 1];
            const int k  = compute_shape_factor<depos_order>(sy,  ymid);
            amrex::Real AMREX_RESTRICT sy0[depos_order + 1];
            const int k0 = compute_shape_factor<depos_order>(sy0, ymid-stagger_shift);
#endif
            // z direction
            const amrex::Real zmid= (zp[ip]-zmin)*dzi-dts2dz*vz;
            amrex::Real AMREX_RESTRICT sz [depos_order + 1];
            const int l  = compute_shape_factor<depos_order>(sz,  zmid);
            amrex::Real AMREX_RESTRICT sz0[depos_order + 1];
            const int l0 = compute_shape_factor<depos_order>(sz0, zmid-stagger_shift);

            // Deposit current into jx_arr, jy_arr and jz_arr
#if (AMREX_SPACEDIM == 2)
            for (int iz=0; iz<=depos_order; iz++){
                for (int ix=0; ix<=depos_order; ix++){
                    amrex::Gpu::Atomic::Add(
                        &jx_arr(lo.x+j0+ix, lo.y+l +iz, 0), 
                        sx0[ix]*sz [iz]*wqx);
                    amrex::Gpu::Atomic::Add(
                        &jy_arr(lo.x+j +ix, lo.y+l +iz, 0), 
                        sx [ix]*sz [iz]*wqy);
                    amrex::Gpu::Atomic::Add(
                        &jz_arr(lo.x+j +ix, lo.y+l0+iz, 0), 
                        sx [ix]*sz0[iz]*wqz);
                }
            }
#else // (AMREX_SPACEDIM == 3)
            for (int iz=0; iz<=depos_order; iz++){
                for (int iy=0; iy<=depos_order; iy++){
                    for (int ix=0; ix<=depos_order; ix++){
                        amrex::Gpu::Atomic::Add(
                            &jx_arr(lo.x+j0+ix, lo.y+k +iy, lo.z+l +iz),
                            sx0[ix]*sy [iy]*sz [iz]*wqx);
                        amrex::Gpu::Atomic::Add(
                            &jy_arr(lo.x+j +ix, lo.y+k0+iy, lo.z+l +iz), 
                            sx [ix]*sy0[iy]*sz [iz]*wqy);
                        amrex::Gpu::Atomic::Add(
                            &jz_arr(lo.x+j +ix, lo.y+k +iy, lo.z+l0+iz),
                            sx [ix]*sy [iy]*sz0[iz]*wqz);
                    }
                }
            }
#endif
        }
        );
}

/* \brief Esirkepov Current Deposition for thread thread_num
 * /param xp, yp, zp   : Pointer to arrays of particle positions.
 * \param wp           : Pointer to array of particle weights.
 * \param uxp uyp uzp  : Pointer to arrays of particle momentum.
 * \param Jx_arr       : Array4 of current density, either full array or tile.
 * \param Jy_arr       : Array4 of current density, either full array or tile.
 * \param Jz_arr       : Array4 of current density, either full array or tile.
 * \param np_to_depose : Number of particles for which current is deposited.
 * \param dt           : Time step for particle level
 * \param dx           : 3D cell size
 * \param xyzmin       : Physical lower bounds of domain.
 * \param lo           : Index lower bounds of domain.
 * /param q            : species charge.
 */
template <int depos_order>
void doEsirkepovDepositionShapeN (const amrex::Real * const xp,
                                  const amrex::Real * const yp,
                                  const amrex::Real * const zp,
                                  const amrex::Real * const wp,
                                  const amrex::Real * const uxp,
                                  const amrex::Real * const uyp,
                                  const amrex::Real * const uzp,
                                  const amrex::Array4<amrex::Real>& Jx_arr,
                                  const amrex::Array4<amrex::Real>& Jy_arr,
                                  const amrex::Array4<amrex::Real>& Jz_arr,
                                  const long np_to_depose,
                                  const amrex::Real dt,
                                  const std::array<amrex::Real,3>& dx,
                                  const std::array<amrex::Real, 3> xyzmin,
                                  const amrex::Dim3 lo,
                                  const amrex::Real q)
{
    const amrex::Real dxi = 1.0/dx[0];
    const amrex::Real dtsdx0 = dt*dxi;
    const amrex::Real xmin = xyzmin[0];
#if (AMREX_SPACEDIM == 3)
    const amrex::Real dyi = 1.0/dx[1];
    const amrex::Real dtsdy0 = dt*dyi;
    const amrex::Real ymin = xyzmin[1];
#endif
    const amrex::Real dzi = 1.0/dx[2];
    const amrex::Real dtsdz0 = dt*dzi;
    const amrex::Real zmin = xyzmin[2];

#if (AMREX_SPACEDIM == 3)
    const amrex::Real invdtdx = 1.0/(dt*dx[1]*dx[2]);
    const amrex::Real invdtdy = 1.0/(dt*dx[0]*dx[2]);
    const amrex::Real invdtdz = 1.0/(dt*dx[0]*dx[1]);
#elif (AMREX_SPACEDIM == 2)
    const amrex::Real invdtdx = 1.0/(dt*dx[2]);
    const amrex::Real invdtdz = 1.0/(dt*dx[0]);
    const amrex::Real invvol = 1.0/(dx[0]*dx[2]);
#endif

    const amrex::Real clightsq = 1.0/PhysConst::c/PhysConst::c;

    // Loop over particles and deposit into Jx_arr, Jy_arr and Jz_arr
    amrex::ParallelFor( 
        np_to_depose,
        [=] AMREX_GPU_DEVICE (long ip) {

            // --- Get particle quantities
            const amrex::Real gaminv = 1.0/std::sqrt(1.0 + uxp[ip]*uxp[ip]*clightsq
                                                     + uyp[ip]*uyp[ip]*clightsq
                                                     + uzp[ip]*uzp[ip]*clightsq);

            // wqx, wqy wqz are particle current in each direction
            const amrex::Real wq = q*wp[ip];
            const amrex::Real wqx = wq*invdtdx;
#if (AMREX_SPACEDIM == 3)
            const amrex::Real wqy = wq*invdtdy;
#endif
            const amrex::Real wqz = wq*invdtdz;

            // computes current and old position in grid units
            const amrex::Real x_new = (xp[ip] - xmin)*dxi;
            const amrex::Real x_old = x_new - dtsdx0*uxp[ip]*gaminv;
#if (AMREX_SPACEDIM == 3)        
            const amrex::Real y_new = (yp[ip] - ymin)*dyi;
            const amrex::Real y_old = y_new - dtsdy0*uyp[ip]*gaminv;
#endif
            const amrex::Real z_new = (zp[ip] - zmin)*dzi;
            const amrex::Real z_old = z_new - dtsdz0*uzp[ip]*gaminv;

            // Shape factor arrays
            // Note that there are extra values above and below
            // to possibly hold the factor for the old particle
            // which can be at a different grid location.
            amrex::Real AMREX_RESTRICT sx_new[depos_order + 3] = {0.};
            amrex::Real AMREX_RESTRICT sx_old[depos_order + 3] = {0.};
#if (AMREX_SPACEDIM == 3)
            amrex::Real AMREX_RESTRICT sy_new[depos_order + 3] = {0.};
            amrex::Real AMREX_RESTRICT sy_old[depos_order + 3] = {0.};
#endif
            amrex::Real AMREX_RESTRICT sz_new[depos_order + 3] = {0.};
            amrex::Real AMREX_RESTRICT sz_old[depos_order + 3] = {0.};

            // --- Compute shape factors
            // Compute shape factors for position as they are now and at old positions
            // [ijk]_new: leftmost grid point that the particle touches
            const int i_new = compute_shape_factor<depos_order>(sx_new+1, x_new);
            const int i_old = compute_shifted_shape_factor<depos_order>(sx_old, x_old, i_new);
#if (AMREX_SPACEDIM == 3)
            const int j_new = compute_shape_factor<depos_order>(sy_new+1, y_new);
            const int j_old = compute_shifted_shape_factor<depos_order>(sy_old, y_old, j_new);
#endif 
            const int k_new = compute_shape_factor<depos_order>(sz_new+1, z_new);
            const int k_old = compute_shifted_shape_factor<depos_order>(sz_old, z_old, k_new);

            // computes min/max positions of current contributions
            int dil = 1, diu = 1;
            if (i_old < i_new) dil = 0;
            if (i_old > i_new) diu = 0;
#if (AMREX_SPACEDIM == 3)
            int djl = 1, dju = 1;
            if (j_old < j_new) djl = 0;
            if (j_old > j_new) dju = 0;
#endif
            int dkl = 1, dku = 1;
            if (k_old < k_new) dkl = 0;
            if (k_old > k_new) dku = 0;

#if (AMREX_SPACEDIM == 3)

            for (int k=dkl; k<=depos_order+2-dku; k++) {
                for (int j=djl; j<=depos_order+2-dju; j++) {
                    amrex::Real sdxi = 0.;
                    for (int i=dil; i<=depos_order+1-diu; i++) {
                        sdxi += wqx*(sx_old[i] - sx_new[i])*((sy_new[j] + 0.5*(sy_old[j] - sy_new[j]))*sz_new[k] +
                                                             (0.5*sy_new[j] + 1./3.*(sy_old[j] - sy_new[j]))*(sz_old[k] - sz_new[k]));
                        amrex::Gpu::Atomic::Add( &Jx_arr(lo.x+i_new-1+i, lo.y+j_new-1+j, lo.z+k_new-1+k), sdxi);
                    }
                }
            }
            for (int k=dkl; k<=depos_order+2-dku; k++) {
                for (int i=dil; i<=depos_order+2-diu; i++) {
                    amrex::Real sdyj = 0.;
                    for (int j=djl; j<=depos_order+1-dju; j++) {
                        sdyj += wqy*(sy_old[j] - sy_new[j])*((sz_new[k] + 0.5*(sz_old[k] - sz_new[k]))*sx_new[i] +
                                                             (0.5*sz_new[k] + 1./3.*(sz_old[k] - sz_new[k]))*(sx_old[i] - sx_new[i]));
                        amrex::Gpu::Atomic::Add( &Jy_arr(lo.x+i_new-1+i, lo.y+j_new-1+j, lo.z+k_new-1+k), sdyj);
                    }
                }
            }
            for (int j=djl; j<=depos_order+2-dju; j++) {
                for (int i=dil; i<=depos_order+2-diu; i++) {
                    amrex::Real sdzk = 0.;
                    for (int k=dkl; k<=depos_order+1-dku; k++) {
                        sdzk += wqz*(sz_old[k] - sz_new[k])*((sx_new[i] + 0.5*(sx_old[i] - sx_new[i]))*sy_new[j] +
                                                             (0.5*sx_new[i] + 1./3.*(sx_old[i] - sx_new[i]))*(sy_old[j] - sy_new[j]));
                        amrex::Gpu::Atomic::Add( &Jz_arr(lo.x+i_new-1+i, lo.y+j_new-1+j, lo.z+k_new-1+k), sdzk);
                    }
                }
            }

#elif (AMREX_SPACEDIM == 2)

            for (int k=dkl; k<=depos_order+2-dku; k++) {
                amrex::Real sdxi = 0.;
                for (int i=dil; i<=depos_order+1-diu; i++) {
                    sdxi += wqx*(sx_old[i] - sx_new[i])*(sz_new[k] + 0.5*(sz_old[k] - sz_new[k]));
                    amrex::Gpu::Atomic::Add( &Jx_arr(lo.x+i_new-1+i, lo.y+k_new-1+k, 0), sdxi);
                }
            }
            for (int k=dkl; k<=depos_order+2-dku; k++) {
                for (int i=dil; i<=depos_order+2-diu; i++) {
                    const amrex::Real sdyj = wq*uyp[ip]*gaminv*invvol*((sz_new[k] + 0.5*(sz_old[k] - sz_new[k]))*sx_new[i] +
                                                                       (0.5*sz_new[k] + 1./3.*(sz_old[k] - sz_new[k]))*(sx_old[i] - sx_new[i]));
                    amrex::Gpu::Atomic::Add( &Jy_arr(lo.x+i_new-1+i, lo.y+k_new-1+k, 0), sdyj);
                }
            }
            for (int i=dil; i<=depos_order+2-diu; i++) {
                amrex::Real sdzk = 0.;
                for (int k=dkl; k<=depos_order+1-dku; k++) {
                    sdzk += wqz*(sz_old[k] - sz_new[k])*(sx_new[i] + 0.5*(sx_old[i] - sx_new[i]));
                    amrex::Gpu::Atomic::Add( &Jz_arr(lo.x+i_new-1+i, lo.y+k_new-1+k, 0), sdzk);
                }
            }

#endif
        }
        );
}

#endif // CURRENTDEPOSITION_H_