1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
/* Copyright 2019-2020 Andrew Myers, Axel Huebl, David Grote
* Luca Fedeli, Maxence Thevenet, Remi Lehe
* Revathi Jambunathan, Weiqun Zhang
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "LaserParticleContainer.H"
#include "Evolve/WarpXDtType.H"
#include "Laser/LaserProfiles.H"
#include "Particles/LaserParticleContainer.H"
#include "Particles/Pusher/GetAndSetPosition.H"
#include "Particles/WarpXParticleContainer.H"
#include "Utils/Parser/ParserUtils.H"
#include "Utils/TextMsg.H"
#include "Utils/WarpXAlgorithmSelection.H"
#include "Utils/WarpXConst.H"
#include "Utils/WarpXProfilerWrapper.H"
#include <ablastr/warn_manager/WarnManager.H>
#include <AMReX.H>
#include <AMReX_BLassert.H>
#include <AMReX_Box.H>
#include <AMReX_BoxArray.H>
#include <AMReX_Config.H>
#include <AMReX_DistributionMapping.H>
#include <AMReX_Extension.H>
#include <AMReX_Geometry.H>
#include <AMReX_GpuAtomic.H>
#include <AMReX_GpuContainers.H>
#include <AMReX_GpuControl.H>
#include <AMReX_GpuDevice.H>
#include <AMReX_GpuLaunch.H>
#include <AMReX_GpuQualifiers.H>
#include <AMReX_IntVect.H>
#include <AMReX_LayoutData.H>
#include <AMReX_PODVector.H>
#include <AMReX_ParIter.H>
#include <AMReX_ParallelDescriptor.H>
#include <AMReX_ParmParse.H>
#include <AMReX_Particles.H>
#include <AMReX_Print.H>
#include <AMReX_REAL.H>
#include <AMReX_RealBox.H>
#include <AMReX_StructOfArrays.H>
#include <AMReX_TinyProfiler.H>
#include <AMReX_Utility.H>
#include <AMReX_Vector.H>
#ifdef AMREX_USE_OMP
# include <omp.h>
#endif
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include <type_traits>
using namespace amrex;
using namespace WarpXLaserProfiles;
namespace
{
Vector<Real> CrossProduct (const Vector<Real>& a, const Vector<Real>& b)
{
return { a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0] };
}
}
LaserParticleContainer::LaserParticleContainer (AmrCore* amr_core, int ispecies, const std::string& name)
: WarpXParticleContainer(amr_core, ispecies),
m_laser_name{name}
{
charge = 1.0;
mass = std::numeric_limits<Real>::max();
ParmParse pp_laser_name(m_laser_name);
// Parse the type of laser profile and set the corresponding flag `profile`
std::string laser_type_s;
pp_laser_name.get("profile", laser_type_s);
std::transform(laser_type_s.begin(), laser_type_s.end(), laser_type_s.begin(), ::tolower);
// Parse the properties of the antenna
utils::parser::getArrWithParser(pp_laser_name, "position", m_position);
utils::parser::getArrWithParser(pp_laser_name, "direction", m_nvec);
utils::parser::getArrWithParser(pp_laser_name, "polarization", m_p_X);
WARPX_ALWAYS_ASSERT_WITH_MESSAGE(m_position.size() == 3,
m_laser_name + ".position must have three components.");
WARPX_ALWAYS_ASSERT_WITH_MESSAGE(m_nvec.size() == 3,
m_laser_name + ".direction must have three components.");
WARPX_ALWAYS_ASSERT_WITH_MESSAGE(m_p_X.size() == 3,
m_laser_name + ".polarization must have three components.");
utils::parser::getWithParser(pp_laser_name, "wavelength", m_wavelength);
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
m_wavelength > 0, "The laser wavelength must be >0.");
const bool e_max_is_specified =
utils::parser::queryWithParser(pp_laser_name, "e_max", m_e_max);
Real a0;
const bool a0_is_specified =
utils::parser::queryWithParser(pp_laser_name, "a0", a0);
if (a0_is_specified){
Real omega = 2._rt*MathConst::pi*PhysConst::c/m_wavelength;
m_e_max = PhysConst::m_e * omega * PhysConst::c * a0 / PhysConst::q_e;
}
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
e_max_is_specified ^ a0_is_specified,
"Exactly one of e_max or a0 must be specified for the laser.\n"
);
pp_laser_name.query("do_continuous_injection", do_continuous_injection);
utils::parser::queryWithParser(pp_laser_name,
"min_particles_per_mode", m_min_particles_per_mode);
if (m_e_max == amrex::Real(0.)){
ablastr::warn_manager::WMRecordWarning("Laser",
m_laser_name + " with zero amplitude disabled.",
ablastr::warn_manager::WarnPriority::low);
m_enabled = false;
return; // Disable laser if amplitude is 0
}
//Select laser profile
if(laser_profiles_dictionary.count(laser_type_s) == 0){
amrex::Abort(std::string("Unknown laser type: ").append(laser_type_s));
}
m_up_laser_profile = laser_profiles_dictionary.at(laser_type_s)();
//__________
#ifdef WARPX_DIM_XZ
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_nvec[1] == amrex::Real(0),
"Laser propagation direction must be 0 along y in 2D");
#endif
#ifdef WARPX_DIM_1D_Z
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_nvec[0] == amrex::Real(0),
"Laser propagation direction must be 0 along x in 1D");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_nvec[1] == amrex::Real(0),
"Laser propagation direction must be 0 along y in 1D");
#endif
// Plane normal
Real s = 1.0_rt / std::sqrt(m_nvec[0]*m_nvec[0] + m_nvec[1]*m_nvec[1] + m_nvec[2]*m_nvec[2]);
m_nvec = { m_nvec[0]*s, m_nvec[1]*s, m_nvec[2]*s };
if (WarpX::gamma_boost > 1.) {
// Check that the laser direction is equal to the boost direction
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( m_nvec[0]*WarpX::boost_direction[0]
+ m_nvec[1]*WarpX::boost_direction[1]
+ m_nvec[2]*WarpX::boost_direction[2] - 1. < 1.e-12,
"The Lorentz boost should be in the same direction as the laser propagation");
// Get the position of the plane, along the boost direction, in the lab frame
// and convert the position of the antenna to the boosted frame
m_Z0_lab = m_nvec[0]*m_position[0] + m_nvec[1]*m_position[1] + m_nvec[2]*m_position[2];
Real Z0_boost = m_Z0_lab/WarpX::gamma_boost;
m_position[0] += (Z0_boost-m_Z0_lab)*m_nvec[0];
m_position[1] += (Z0_boost-m_Z0_lab)*m_nvec[1];
m_position[2] += (Z0_boost-m_Z0_lab)*m_nvec[2];
}
// The first polarization vector
s = 1.0_rt / std::sqrt(m_p_X[0]*m_p_X[0] + m_p_X[1]*m_p_X[1] + m_p_X[2]*m_p_X[2]);
m_p_X = { m_p_X[0]*s, m_p_X[1]*s, m_p_X[2]*s };
Real const dp = std::inner_product(
m_nvec.begin(), m_nvec.end(), m_p_X.begin(), 0.0_rt);
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(std::abs(dp) < 1.0e-14,
"Laser plane vector is not perpendicular to the main polarization vector");
m_p_Y = CrossProduct(m_nvec, m_p_X); // The second polarization vector
#if defined(WARPX_DIM_3D) || defined(WARPX_DIM_RZ)
m_u_X = m_p_X;
m_u_Y = m_p_Y;
#elif defined(WARPX_DIM_XZ)
m_u_X = CrossProduct({0., 1., 0.}, m_nvec);
m_u_Y = {0., 1., 0.};
#elif defined(WARPX_DIM_1D_Z)
m_u_X = {1., 0., 0.};
m_u_Y = {0., 1., 0.};
#endif
m_laser_injection_box= Geom(0).ProbDomain();
{
Vector<Real> lo, hi;
if (utils::parser::queryArrWithParser(
pp_laser_name, "prob_lo", lo, 0, AMREX_SPACEDIM)) {
m_laser_injection_box.setLo(lo);
}
if (utils::parser::queryArrWithParser(
pp_laser_name, "prob_hi", hi, 0, AMREX_SPACEDIM)) {
m_laser_injection_box.setHi(hi);
}
}
if (do_continuous_injection){
// If laser antenna initially outside of the box, store its theoretical
// position in z_antenna_th
m_updated_position = m_position;
// Sanity checks
int dir = WarpX::moving_window_dir;
std::vector<Real> windir(3, 0.0);
#if defined(WARPX_DIM_1D_Z)
windir[2] = 1.0;
amrex::ignore_unused(dir);
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
windir[2*dir] = 1.0;
#else
windir[dir] = 1.0;
#endif
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
(m_nvec[0]-windir[0]) + (m_nvec[1]-windir[1]) + (m_nvec[2]-windir[2])
< 1.e-12, "do_continous_injection for laser particle only works" +
" if moving window direction and laser propagation direction are the same");
if ( WarpX::gamma_boost>1 ){
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
(WarpX::boost_direction[0]-0)*(WarpX::boost_direction[0]-0) +
(WarpX::boost_direction[1]-0)*(WarpX::boost_direction[1]-0) +
(WarpX::boost_direction[2]-1)*(WarpX::boost_direction[2]-1) < 1.e-12,
"do_continous_injection for laser particle only works if " +
"warpx.boost_direction = z. TODO: all directions.");
}
}
//Init laser profile
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_e_max >= 0.,
"Laser amplitude (e_max) must be >= 0.");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_wavelength > 0.,
"Laser wavelength must be positive.");
CommonLaserParameters common_params;
common_params.wavelength = m_wavelength;
common_params.e_max = m_e_max;
common_params.p_X = m_p_X;
common_params.nvec = m_nvec;
m_up_laser_profile->init(pp_laser_name, ParmParse{"my_constants"}, common_params);
}
/* \brief Check if laser particles enter the box, and inject if necessary.
* \param injection_box: a RealBox where particles should be injected.
*/
void
LaserParticleContainer::ContinuousInjection (const RealBox& injection_box)
{
if (!m_enabled) return;
// Input parameter injection_box contains small box where injection
// should occur.
// So far, LaserParticleContainer::laser_injection_box contains the
// outdated full problem domain at t=0.
// Convert updated_position to Real* to use RealBox::contains().
#if defined(WARPX_DIM_3D)
const Real* p_pos = m_updated_position.dataPtr();
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
const Real p_pos[2] = {m_updated_position[0], m_updated_position[2]};
#else
const Real p_pos[1] = {m_updated_position[2]};
#endif
#if defined(WARPX_DIM_RZ)
// In RZ, check if laser enters the box only along Z. This is needed
// because the Cartesian check below (injection_box.contains(p_pos))
// would fail in RZ, due to the fact that such a check verifies that
// p_pos is strictly contained within injection_box and this is not
// the case for the R coordinate of the laser antenna in RZ (since
// that equals 0 and thus coincides with the low end of the injection
// box along R, which also equals 0).
const bool is_contained = (injection_box.lo(1) < p_pos[1] &&
p_pos[1] < injection_box.hi(1));
#else
const bool is_contained = injection_box.contains(p_pos);
#endif
if (is_contained)
{
// Update laser_injection_box with current value
m_laser_injection_box = injection_box;
// Inject laser particles. LaserParticleContainer::InitData
// is called only once, when the antenna enters the simulation
// domain.
InitData();
}
}
/* \brief update position of the antenna if running in boosted frame.
* \param dt time step (level 0).
* The up-to-date antenna position is stored in updated_position.
*/
void
LaserParticleContainer::UpdateContinuousInjectionPosition (Real dt)
{
if (!m_enabled) return;
int dir = WarpX::moving_window_dir;
if (do_continuous_injection and (WarpX::gamma_boost > 1)){
// In boosted-frame simulations, the antenna has moved since the last
// call to this function, and injection position needs to be updated
#if defined(WARPX_DIM_3D)
m_updated_position[dir] -= WarpX::beta_boost *
WarpX::boost_direction[dir] * PhysConst::c * dt;
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
// In 2D, dir=0 corresponds to x and dir=1 corresponds to z
// This needs to be converted in order to index `boost_direction`
// which has 3 components, for both 2D and 3D simulations.
m_updated_position[2*dir] -= WarpX::beta_boost *
WarpX::boost_direction[2*dir] * PhysConst::c * dt;
#elif defined(WARPX_DIM_1D_Z)
// In 1D, dir=0 corresponds to z
// This needs to be converted in order to index `boost_direction`
// which has 3 components, for 1D, 2D, and 3D simulations.
m_updated_position[2] -= WarpX::beta_boost *
WarpX::boost_direction[2] * PhysConst::c * dt;
amrex::ignore_unused(dir);
#endif
}
}
void
LaserParticleContainer::InitData ()
{
if (!m_enabled) return;
// Call InitData on max level to inject one laser particle per
// finest cell.
InitData(maxLevel());
if(!do_continuous_injection && (TotalNumberOfParticles() == 0)){
ablastr::warn_manager::WMRecordWarning("Laser",
"The antenna is completely out of the simulation box for laser " + m_laser_name,
ablastr::warn_manager::WarnPriority::high);
m_enabled = false; // Disable laser if antenna is completely out of the simulation box
}
}
void
LaserParticleContainer::InitData (int lev)
{
if (!m_enabled) return;
// spacing of laser particles in the laser plane.
// has to be done after geometry is set up.
Real S_X, S_Y;
ComputeSpacing(lev, S_X, S_Y);
ComputeWeightMobility(S_X, S_Y);
// LaserParticleContainer::position contains the initial position of the
// laser antenna. In the boosted frame, the antenna is moving.
// Update its position with updated_position.
if (do_continuous_injection){
m_position = m_updated_position;
}
#if (AMREX_SPACEDIM >= 2)
auto Transform = [&](int const i, int const j) -> Vector<Real>{
#if defined(WARPX_DIM_3D)
return { m_position[0] + (S_X*(Real(i)+0.5_rt))*m_u_X[0] + (S_Y*(Real(j)+0.5_rt))*m_u_Y[0],
m_position[1] + (S_X*(Real(i)+0.5_rt))*m_u_X[1] + (S_Y*(Real(j)+0.5_rt))*m_u_Y[1],
m_position[2] + (S_X*(Real(i)+0.5_rt))*m_u_X[2] + (S_Y*(Real(j)+0.5_rt))*m_u_Y[2] };
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
amrex::ignore_unused(j);
# if defined(WARPX_DIM_RZ)
return { m_position[0] + (S_X*(Real(i)+0.5_rt)),
0.0_rt,
m_position[2]};
# else
return { m_position[0] + (S_X*(Real(i)+0.5_rt))*m_u_X[0],
0.0_rt,
m_position[2] + (S_X*(Real(i)+0.5_rt))*m_u_X[2] };
# endif
#endif
};
#endif
// Given the "lab" frame coordinates, return the real coordinates in the laser plane coordinates
auto InverseTransform = [&](const Vector<Real>& pos) -> Vector<Real>{
#if defined(WARPX_DIM_3D)
return {m_u_X[0]*(pos[0]-m_position[0])+m_u_X[1]*(pos[1]-m_position[1])+m_u_X[2]*(pos[2]-m_position[2]),
m_u_Y[0]*(pos[0]-m_position[0])+m_u_Y[1]*(pos[1]-m_position[1])+m_u_Y[2]*(pos[2]-m_position[2])};
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
# if defined(WARPX_DIM_RZ)
return {pos[0]-m_position[0], 0.0_rt};
# else
return {m_u_X[0]*(pos[0]-m_position[0])+m_u_X[2]*(pos[2]-m_position[2]), 0.0_rt};
# endif
#else
return {m_u_X[2]*(pos[2]-m_position[2]), 0.0_rt};
#endif
};
Vector<int> plane_lo(2, std::numeric_limits<int>::max());
Vector<int> plane_hi(2, std::numeric_limits<int>::min());
{
auto compute_min_max = [&](Real x, Real y, Real z){
const Vector<Real>& pos_plane = InverseTransform({x, y, z});
auto i = static_cast<int>(pos_plane[0]/S_X);
auto j = static_cast<int>(pos_plane[1]/S_Y);
plane_lo[0] = std::min(plane_lo[0], i);
plane_lo[1] = std::min(plane_lo[1], j);
plane_hi[0] = std::max(plane_hi[0], i);
plane_hi[1] = std::max(plane_hi[1], j);
};
const Real* prob_lo = m_laser_injection_box.lo();
const Real* prob_hi = m_laser_injection_box.hi();
#if defined(WARPX_DIM_3D)
compute_min_max(prob_lo[0], prob_lo[1], prob_lo[2]);
compute_min_max(prob_hi[0], prob_lo[1], prob_lo[2]);
compute_min_max(prob_lo[0], prob_hi[1], prob_lo[2]);
compute_min_max(prob_hi[0], prob_hi[1], prob_lo[2]);
compute_min_max(prob_lo[0], prob_lo[1], prob_hi[2]);
compute_min_max(prob_hi[0], prob_lo[1], prob_hi[2]);
compute_min_max(prob_lo[0], prob_hi[1], prob_hi[2]);
compute_min_max(prob_hi[0], prob_hi[1], prob_hi[2]);
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
compute_min_max(prob_lo[0], 0.0, prob_lo[1]);
compute_min_max(prob_hi[0], 0.0, prob_lo[1]);
compute_min_max(prob_lo[0], 0.0, prob_hi[1]);
compute_min_max(prob_hi[0], 0.0, prob_hi[1]);
#else
compute_min_max(0.0, 0.0, prob_lo[0]);
compute_min_max(0.0, 0.0, prob_hi[0]);
#endif
}
const int nprocs = ParallelDescriptor::NProcs();
const int myproc = ParallelDescriptor::MyProc();
#if defined(WARPX_DIM_3D)
const Box plane_box {IntVect(plane_lo[0],plane_lo[1],0),
IntVect(plane_hi[0],plane_hi[1],0)};
BoxArray plane_ba {plane_box};
{
IntVect chunk(plane_box.size());
const int min_size = 8;
while (plane_ba.size() < nprocs && chunk[0] > min_size && chunk[1] > min_size)
{
for (int j = 1; j >= 0 ; j--)
{
chunk[j] /= 2;
if (plane_ba.size() < nprocs) {
plane_ba.maxSize(chunk);
}
}
}
}
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
BoxArray plane_ba { Box {IntVect(plane_lo[0],0), IntVect(plane_hi[0],0)} };
#else
BoxArray plane_ba { Box {IntVect(0), IntVect(0)} };
#endif
amrex::Vector<amrex::ParticleReal> particle_x, particle_y, particle_z, particle_w;
const DistributionMapping plane_dm {plane_ba, nprocs};
const Vector<int>& procmap = plane_dm.ProcessorMap();
for (int i = 0, n = plane_ba.size(); i < n; ++i)
{
if (procmap[i] == myproc)
{
const Box& bx = plane_ba[i];
for (IntVect cell = bx.smallEnd(); cell <= bx.bigEnd(); bx.next(cell))
{
#if (AMREX_SPACEDIM >= 2)
const Vector<Real>& pos = Transform(cell[0], cell[1]);
#else
const Vector<Real>& pos = { 0.0_rt, 0.0_rt, m_position[2] };
#endif
#if defined(WARPX_DIM_3D)
const Real* x = pos.dataPtr();
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
const Real x[2] = {pos[0], pos[2]};
#else
const Real x[1] = {pos[2]};
#endif
if (m_laser_injection_box.contains(x))
{
#ifndef WARPX_DIM_RZ
for (int k = 0; k<2; ++k) {
particle_x.push_back(pos[0]);
particle_y.push_back(pos[1]);
particle_z.push_back(pos[2]);
}
particle_w.push_back( m_weight);
particle_w.push_back(-m_weight);
#else
// Particles are laid out in radial spokes
const int n_spokes = (WarpX::n_rz_azimuthal_modes - 1)*m_min_particles_per_mode;
for (int spoke = 0 ; spoke < n_spokes ; spoke++) {
const Real phase = 2.*MathConst::pi*spoke/n_spokes;
for (int k = 0; k<2; ++k) {
particle_x.push_back(pos[0]*std::cos(phase));
particle_y.push_back(pos[0]*std::sin(phase));
particle_z.push_back(pos[2]);
}
const Real r_weight = m_weight*2.*MathConst::pi*pos[0]/n_spokes;
particle_w.push_back( r_weight);
particle_w.push_back(-r_weight);
}
#endif
}
}
}
}
const int np = particle_z.size();
amrex::Vector<amrex::ParticleReal> particle_ux(np, 0.0);
amrex::Vector<amrex::ParticleReal> particle_uy(np, 0.0);
amrex::Vector<amrex::ParticleReal> particle_uz(np, 0.0);
if (Verbose()) amrex::Print() << Utils::TextMsg::Info("Adding laser particles");
// Add particles on level 0. They will be redistributed afterwards
AddNParticles(0,
np, particle_x.dataPtr(), particle_y.dataPtr(), particle_z.dataPtr(),
particle_ux.dataPtr(), particle_uy.dataPtr(), particle_uz.dataPtr(),
1, particle_w.dataPtr(), 0, nullptr, 1);
}
void
LaserParticleContainer::Evolve (int lev,
const MultiFab&, const MultiFab&, const MultiFab&,
const MultiFab&, const MultiFab&, const MultiFab&,
MultiFab& jx, MultiFab& jy, MultiFab& jz,
MultiFab* cjx, MultiFab* cjy, MultiFab* cjz,
MultiFab* rho, MultiFab* crho,
const MultiFab*, const MultiFab*, const MultiFab*,
const MultiFab*, const MultiFab*, const MultiFab*,
Real t, Real dt, DtType /*a_dt_type*/, bool skip_deposition)
{
WARPX_PROFILE("LaserParticleContainer::Evolve()");
WARPX_PROFILE_VAR_NS("LaserParticleContainer::Evolve::ParticlePush", blp_pp);
if (!m_enabled) return;
Real t_lab = t;
if (WarpX::gamma_boost > 1) {
// Convert time from the boosted to the lab-frame
// (in order to later calculate the amplitude of the field,
// at the position of the antenna, in the lab-frame)
t_lab = 1._rt/WarpX::gamma_boost*t + WarpX::beta_boost*m_Z0_lab/PhysConst::c;
}
// Update laser profile
m_up_laser_profile->update(t);
BL_ASSERT(OnSameGrids(lev,jx));
amrex::LayoutData<amrex::Real>* cost = WarpX::getCosts(lev);
const bool has_buffer = cjx;
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
{
#ifdef AMREX_USE_OMP
int const thread_num = omp_get_thread_num();
#else
int const thread_num = 0;
#endif
Gpu::DeviceVector<Real> plane_Xp, plane_Yp, amplitude_E;
for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
{
if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers)
{
amrex::Gpu::synchronize();
}
Real wt = static_cast<Real>(amrex::second());
auto& attribs = pti.GetAttribs();
auto& wp = attribs[PIdx::w ];
auto& uxp = attribs[PIdx::ux];
auto& uyp = attribs[PIdx::uy];
auto& uzp = attribs[PIdx::uz];
const long np = pti.numParticles();
plane_Xp.resize(np);
plane_Yp.resize(np);
amplitude_E.resize(np);
// Determine whether particles will deposit on the fine or coarse level
long np_current = np;
if (lev > 0 && m_deposit_on_main_grid && has_buffer) {
np_current = 0;
}
if (rho && ! skip_deposition && ! do_not_deposit) {
int* AMREX_RESTRICT ion_lev = nullptr;
DepositCharge(pti, wp, ion_lev, rho, 0, 0,
np_current, thread_num, lev, lev);
if (has_buffer) {
DepositCharge(pti, wp, ion_lev, crho, 0, np_current,
np-np_current, thread_num, lev, lev-1);
}
}
//
// Particle Push
//
WARPX_PROFILE_VAR_START(blp_pp);
// Find the coordinates of the particles in the emission plane
calculate_laser_plane_coordinates(pti, np,
plane_Xp.dataPtr(),
plane_Yp.dataPtr());
// Calculate the laser amplitude to be emitted,
// at the position of the emission plane
m_up_laser_profile->fill_amplitude(
np, plane_Xp.dataPtr(), plane_Yp.dataPtr(),
t_lab, amplitude_E.dataPtr());
// Calculate the corresponding momentum and position for the particles
update_laser_particle(pti, np, uxp.dataPtr(), uyp.dataPtr(),
uzp.dataPtr(), wp.dataPtr(),
amplitude_E.dataPtr(), dt);
WARPX_PROFILE_VAR_STOP(blp_pp);
// Current Deposition
if (skip_deposition == false)
{
// Deposit at t_{n+1/2}
amrex::Real relative_time = -0.5_rt * dt;
int* ion_lev = nullptr;
// Deposit inside domains
DepositCurrent(pti, wp, uxp, uyp, uzp, ion_lev, &jx, &jy, &jz,
0, np_current, thread_num,
lev, lev, dt, relative_time);
if (has_buffer)
{
// Deposit in buffers
DepositCurrent(pti, wp, uxp, uyp, uzp, ion_lev, cjx, cjy, cjz,
np_current, np-np_current, thread_num,
lev, lev-1, dt, relative_time);
}
}
if (rho && ! skip_deposition && ! do_not_deposit) {
int* AMREX_RESTRICT ion_lev = nullptr;
DepositCharge(pti, wp, ion_lev, rho, 1, 0,
np_current, thread_num, lev, lev);
if (has_buffer) {
DepositCharge(pti, wp, ion_lev, crho, 1, np_current,
np-np_current, thread_num, lev, lev-1);
}
}
// This is necessary because of plane_Xp, plane_Yp and amplitude_E
amrex::Gpu::synchronize();
if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers)
{
wt = static_cast<Real>(amrex::second()) - wt;
amrex::HostDevice::Atomic::Add( &(*cost)[pti.index()], wt);
}
}
}
}
void
LaserParticleContainer::PostRestart ()
{
if (!m_enabled) return;
Real Sx, Sy;
const int lev = finestLevel();
ComputeSpacing(lev, Sx, Sy);
ComputeWeightMobility(Sx, Sy);
}
void
LaserParticleContainer::ComputeSpacing (int lev, Real& Sx, Real& Sy) const
{
const std::array<Real,3>& dx = WarpX::CellSize(lev);
#if !defined(WARPX_DIM_RZ)
constexpr float small_float_coeff = 1.e-25f;
constexpr double small_double_coeff = 1.e-50;
constexpr Real small_coeff = std::is_same<Real,float>::value ?
static_cast<Real>(small_float_coeff) :
static_cast<Real>(small_double_coeff);
const auto eps = static_cast<Real>(dx[0]*small_coeff);
#endif
#if defined(WARPX_DIM_3D)
Sx = std::min(std::min(dx[0]/(std::abs(m_u_X[0])+eps),
dx[1]/(std::abs(m_u_X[1])+eps)),
dx[2]/(std::abs(m_u_X[2])+eps));
Sy = std::min(std::min(dx[0]/(std::abs(m_u_Y[0])+eps),
dx[1]/(std::abs(m_u_Y[1])+eps)),
dx[2]/(std::abs(m_u_Y[2])+eps));
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
# if defined(WARPX_DIM_RZ)
Sx = dx[0];
# else
Sx = std::min(dx[0]/(std::abs(m_u_X[0])+eps),
dx[2]/(std::abs(m_u_X[2])+eps));
# endif
Sy = 1.0;
#else
Sx = 1.0;
Sy = 1.0;
amrex::ignore_unused(eps);
#endif
}
void
LaserParticleContainer::ComputeWeightMobility (Real Sx, Real Sy)
{
// The mobility is the constant of proportionality between the field to
// be emitted, and the corresponding velocity that the particles need to have.
// We set the mobility so that the particles do not exceed a fraction
// `eps` of the speed of light, at the peak of the laser field.
constexpr Real eps = 0.05_rt;
m_mobility = eps/m_e_max;
m_weight = PhysConst::ep0 / m_mobility;
// Multiply by particle spacing
#if defined(WARPX_DIM_3D)
m_weight *= Sx * Sy;
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
m_weight *= Sx;
amrex::ignore_unused(Sy);
#else
amrex::ignore_unused(Sx,Sy);
#endif
// When running in the boosted-frame, the input parameters (and in particular
// the amplitude of the field) are given in the lab-frame.
// Therefore, the mobility needs to be modified by a factor WarpX::gamma_boost.
m_mobility = m_mobility/WarpX::gamma_boost;
}
void
LaserParticleContainer::PushP (int /*lev*/, Real /*dt*/,
const MultiFab&, const MultiFab&, const MultiFab&,
const MultiFab&, const MultiFab&, const MultiFab&)
{
// I don't think we need to do anything.
}
/* \brief compute particles position in laser plane coordinate.
*
* \param np: number of laser particles
* \param thread_num: thread number
* \param pplane_Xp, pplane_Yp: pointers to arrays of particle positions
* in laser plane coordinate.
*/
void
LaserParticleContainer::calculate_laser_plane_coordinates (const WarpXParIter& pti, const int np,
Real * AMREX_RESTRICT const pplane_Xp,
Real * AMREX_RESTRICT const pplane_Yp)
{
const auto GetPosition = GetParticlePosition(pti);
#if (AMREX_SPACEDIM >= 2)
Real tmp_u_X_0 = m_u_X[0];
Real tmp_u_X_2 = m_u_X[2];
Real tmp_position_0 = m_position[0];
Real tmp_position_2 = m_position[2];
#if defined(WARPX_DIM_3D) || defined(WARPX_DIM_RZ)
Real tmp_u_X_1 = m_u_X[1];
Real tmp_u_Y_0 = m_u_Y[0];
Real tmp_u_Y_1 = m_u_Y[1];
Real tmp_u_Y_2 = m_u_Y[2];
Real tmp_position_1 = m_position[1];
#endif
#endif
amrex::ParallelFor(
np,
[=] AMREX_GPU_DEVICE (int i) {
ParticleReal x, y, z;
GetPosition(i, x, y, z);
#if defined(WARPX_DIM_3D) || defined(WARPX_DIM_RZ)
pplane_Xp[i] =
tmp_u_X_0 * (x - tmp_position_0) +
tmp_u_X_1 * (y - tmp_position_1) +
tmp_u_X_2 * (z - tmp_position_2);
pplane_Yp[i] =
tmp_u_Y_0 * (x - tmp_position_0) +
tmp_u_Y_1 * (y - tmp_position_1) +
tmp_u_Y_2 * (z - tmp_position_2);
#elif defined(WARPX_DIM_XZ) || defined(WARPX_DIM_RZ)
pplane_Xp[i] =
tmp_u_X_0 * (x - tmp_position_0) +
tmp_u_X_2 * (z - tmp_position_2);
pplane_Yp[i] = 0.;
#elif defined(WARPX_DIM_1D_Z)
pplane_Xp[i] = 0.;
pplane_Yp[i] = 0.;
#endif
}
);
}
/* \brief push laser particles, in simulation coordinates.
*
* \param pti: Particle iterator
* \param np: number of laser particles
* \param puxp, puyp, puzp: pointers to arrays of particle momenta.
* \param pwp: pointer to array of particle weights.
* \param amplitude: Electric field amplitude at the position of each particle.
* \param dt: time step.
*/
void
LaserParticleContainer::update_laser_particle (WarpXParIter& pti,
const int np,
ParticleReal * AMREX_RESTRICT const puxp,
ParticleReal * AMREX_RESTRICT const puyp,
ParticleReal * AMREX_RESTRICT const puzp,
ParticleReal const * AMREX_RESTRICT const pwp,
Real const * AMREX_RESTRICT const amplitude,
const Real dt)
{
const auto GetPosition = GetParticlePosition(pti);
auto SetPosition = SetParticlePosition(pti);
Real tmp_p_X_0 = m_p_X[0];
Real tmp_p_X_1 = m_p_X[1];
Real tmp_p_X_2 = m_p_X[2];
Real tmp_nvec_0 = m_nvec[0];
Real tmp_nvec_1 = m_nvec[1];
Real tmp_nvec_2 = m_nvec[2];
// Copy member variables to tmp copies for GPU runs.
Real tmp_mobility = m_mobility;
Real gamma_boost = WarpX::gamma_boost;
Real beta_boost = WarpX::beta_boost;
amrex::ParallelFor(
np,
[=] AMREX_GPU_DEVICE (int i) {
// Calculate the velocity according to the amplitude of E
const Real sign_charge = (pwp[i]>0) ? 1 : -1;
const Real v_over_c = sign_charge * tmp_mobility * amplitude[i];
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(amrex::Math::abs(v_over_c) < amrex::Real(1.),
"Error: calculated laser particle velocity greater than c."
"Make sure the laser wavelength and amplitude are accurately set.");
// The velocity is along the laser polarization p_X
Real vx = PhysConst::c * v_over_c * tmp_p_X_0;
Real vy = PhysConst::c * v_over_c * tmp_p_X_1;
Real vz = PhysConst::c * v_over_c * tmp_p_X_2;
// When running in the boosted-frame, their is additional velocity along nvec
if (gamma_boost > 1.){
vx -= PhysConst::c * beta_boost * tmp_nvec_0;
vy -= PhysConst::c * beta_boost * tmp_nvec_1;
vz -= PhysConst::c * beta_boost * tmp_nvec_2;
}
// Get the corresponding momenta
const Real gamma =
static_cast<Real>(gamma_boost/std::sqrt(1. - v_over_c*v_over_c));
puxp[i] = gamma * vx;
puyp[i] = gamma * vy;
puzp[i] = gamma * vz;
// Push the the particle positions
ParticleReal x, y, z;
GetPosition(i, x, y, z);
#if !defined(WARPX_DIM_1D_Z)
x += vx * dt;
#endif
#if defined(WARPX_DIM_3D) || defined(WARPX_DIM_RZ)
y += vy * dt;
#endif
z += vz * dt;
SetPosition(i, x, y, z);
}
);
}
|