1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
/* Copyright 2019-2020 Andrew Myers, David Grote, Glenn Richardson
* Ligia Diana Amorim, Luca Fedeli, Maxence Thevenet
* Remi Lehe, Revathi Jambunathan, Weiqun Zhang
* Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifdef _OPENMP
# include <omp.h>
#endif
#include "RigidInjectedParticleContainer.H"
#include "WarpX.H"
#include "Utils/WarpXConst.H"
#include "Utils/WarpXAlgorithmSelection.H"
#include "Pusher/UpdateMomentumBoris.H"
#include "Pusher/UpdateMomentumVay.H"
#include "Pusher/UpdateMomentumBorisWithRadiationReaction.H"
#include "Pusher/UpdateMomentumHigueraCary.H"
#include "Pusher/GetAndSetPosition.H"
#include "Gather/ScaleFields.H"
#include "Gather/FieldGather.H"
#include <limits>
#include <sstream>
#include <algorithm>
using namespace amrex;
RigidInjectedParticleContainer::RigidInjectedParticleContainer (AmrCore* amr_core, int ispecies,
const std::string& name)
: PhysicalParticleContainer(amr_core, ispecies, name)
{
ParmParse pp(species_name);
pp.get("zinject_plane", zinject_plane);
pp.query("projected", projected);
pp.query("focused", focused);
pp.query("rigid_advance", rigid_advance);
}
void RigidInjectedParticleContainer::InitData()
{
done_injecting.resize(finestLevel()+1, 0);
zinject_plane_levels.resize(finestLevel()+1, zinject_plane/WarpX::gamma_boost);
AddParticles(0); // Note - add on level 0
// Particles added by AddParticles should already be in the boosted frame
RemapParticles();
Redistribute(); // We then redistribute
}
void
RigidInjectedParticleContainer::RemapParticles()
{
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(projected, "ERROR: projected = false is not supported with this particle loading");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!focused, "ERROR: focused = true is not supported with this particle loading");
// For rigid_advance == false, nothing needs to be done
if (rigid_advance) {
// The particle z positions are adjusted to account for the difference between
// advancing with vzbar and wih vz[i] before injection
// For now, start with the assumption that this will only happen
// at the start of the simulation.
const Real t_lab = 0.;
const Real uz_boost = WarpX::gamma_boost*WarpX::beta_boost*PhysConst::c;
const Real csqi = 1./(PhysConst::c*PhysConst::c);
vzbeam_ave_boosted = meanParticleVelocity(false)[2];
for (int lev = 0; lev <= finestLevel(); lev++) {
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
{
// Get the average beam velocity in the boosted frame.
// Note that the particles are already in the boosted frame.
// This value is saved to advance the particles not injected yet
for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
{
const auto& attribs = pti.GetAttribs();
const auto uxp = attribs[PIdx::ux].dataPtr();
const auto uyp = attribs[PIdx::uy].dataPtr();
const auto uzp = attribs[PIdx::uz].dataPtr();
const auto GetPosition = GetParticlePosition(pti);
auto SetPosition = SetParticlePosition(pti);
// Loop over particles
const long np = pti.numParticles();
const Real lvzbeam_ave_boosted = vzbeam_ave_boosted;
const Real gamma_boost = WarpX::gamma_boost;
amrex::ParallelFor( np, [=] AMREX_GPU_DEVICE (long i)
{
ParticleReal xp, yp, zp;
GetPosition(i, xp, yp, zp);
const Real gammapr = std::sqrt(1. + (uxp[i]*uxp[i] + uyp[i]*uyp[i] + uzp[i]*uzp[i])*csqi);
const Real vzpr = uzp[i]/gammapr;
// Back out the value of z_lab
const Real z_lab = (zp + uz_boost*t_lab + gamma_boost*t_lab*vzpr)/(gamma_boost + uz_boost*vzpr*csqi);
// Time of the particle in the boosted frame given its position in the lab frame at t=0.
const Real tpr = gamma_boost*t_lab - uz_boost*z_lab*csqi;
// Adjust the position, taking away its motion from its own velocity and adding
// the motion from the average velocity
zp += tpr*vzpr - tpr*lvzbeam_ave_boosted;
SetPosition(i, xp, yp, zp);
});
}
}
}
}
}
void
RigidInjectedParticleContainer::BoostandRemapParticles()
{
// Boost the particles into the boosted frame and map the particles
// to the t=0 in the boosted frame. If using rigid_advance, the z position
// is adjusted using vzbar, otherwise using vz[i]
if (rigid_advance) {
// Get the average beam velocity in the boosted frame
// This value is saved to advance the particles not injected yet
const Real vzbeam_ave_lab = meanParticleVelocity(false)[2];
vzbeam_ave_boosted = (vzbeam_ave_lab - WarpX::beta_boost*PhysConst::c)/(1. - vzbeam_ave_lab*WarpX::beta_boost/PhysConst::c);
}
const Real csqi = 1./(PhysConst::c*PhysConst::c);
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
{
for (WarpXParIter pti(*this, 0); pti.isValid(); ++pti)
{
auto& attribs = pti.GetAttribs();
const auto uxp = attribs[PIdx::ux].dataPtr();
const auto uyp = attribs[PIdx::uy].dataPtr();
const auto uzp = attribs[PIdx::uz].dataPtr();
const auto GetPosition = GetParticlePosition(pti);
auto SetPosition = SetParticlePosition(pti);
// Loop over particles
const long np = pti.numParticles();
const Real lvzbeam_ave_boosted = vzbeam_ave_boosted;
const Real gamma_boost = WarpX::gamma_boost;
const Real beta_boost = WarpX::beta_boost;
const bool lprojected = projected;
const bool lfocused = focused;
const bool lrigid_advance = rigid_advance;
const Real lzinject_plane = zinject_plane;
amrex::ParallelFor( np, [=] AMREX_GPU_DEVICE (long i)
{
ParticleReal xp, yp, zp;
GetPosition(i, xp, yp, zp);
const Real gamma_lab = std::sqrt(1. + (uxp[i]*uxp[i] + uyp[i]*uyp[i] + uzp[i]*uzp[i])*csqi);
const Real vx_lab = uxp[i]/gamma_lab;
const Real vy_lab = uyp[i]/gamma_lab;
const Real vz_lab = uzp[i]/gamma_lab;
// t0_lab is the time in the lab frame that the particles reaches z=0
// The location and time (z=0, t=0) is a synchronization point between the
// lab and boosted frames.
const Real t0_lab = -zp/vz_lab;
if (!lprojected) {
xp += t0_lab*vx_lab;
yp += t0_lab*vy_lab;
}
if (lfocused) {
// Correct for focusing effect from shift from z=0 to zinject
const Real tfocus = -lzinject_plane*gamma_boost/vz_lab;
xp -= tfocus*vx_lab;
yp -= tfocus*vy_lab;
}
// Time of the particle in the boosted frame given its position in the lab frame at t=0.
const Real tpr = -gamma_boost*beta_boost*zp/PhysConst::c;
// Position of the particle in the boosted frame given its position in the lab frame at t=0.
const Real zpr = gamma_boost*zp;
// Momentum of the particle in the boosted frame (assuming that it is fixed).
uzp[i] = gamma_boost*(uzp[i] - beta_boost*PhysConst::c*gamma_lab);
// Put the particle at the location in the boosted frame at boost frame t=0,
if (lrigid_advance) {
// with the particle moving at the average velocity
zp = zpr - lvzbeam_ave_boosted*tpr;
}
else {
// with the particle moving with its own velocity
const Real gammapr = std::sqrt(1. + (uxp[i]*uxp[i] + uyp[i]*uyp[i] + uzp[i]*uzp[i])*csqi);
const Real vzpr = uzp[i]/gammapr;
zp = zpr - vzpr*tpr;
}
SetPosition(i, xp, yp, zp);
});
}
}
}
void
RigidInjectedParticleContainer::PushPX (WarpXParIter& pti,
amrex::FArrayBox const * exfab,
amrex::FArrayBox const * eyfab,
amrex::FArrayBox const * ezfab,
amrex::FArrayBox const * bxfab,
amrex::FArrayBox const * byfab,
amrex::FArrayBox const * bzfab,
const int ngE, const int e_is_nodal,
const long offset,
const long np_to_push,
int lev, int gather_lev,
amrex::Real dt, ScaleFields /*scaleFields*/,
DtType a_dt_type)
{
auto& attribs = pti.GetAttribs();
auto& uxp = attribs[PIdx::ux];
auto& uyp = attribs[PIdx::uy];
auto& uzp = attribs[PIdx::uz];
// Save the position and momenta, making copies
Gpu::DeviceVector<ParticleReal> xp_save, yp_save, zp_save;
RealVector uxp_save, uyp_save, uzp_save;
const auto GetPosition = GetParticlePosition(pti);
auto SetPosition = SetParticlePosition(pti);
ParticleReal* const AMREX_RESTRICT ux = uxp.dataPtr();
ParticleReal* const AMREX_RESTRICT uy = uyp.dataPtr();
ParticleReal* const AMREX_RESTRICT uz = uzp.dataPtr();
if (!done_injecting_lev)
{
// If the old values are not already saved, create copies here.
const auto np = pti.numParticles();
xp_save.resize(np);
yp_save.resize(np);
zp_save.resize(np);
uxp_save.resize(np);
uyp_save.resize(np);
uzp_save.resize(np);
amrex::Real* const AMREX_RESTRICT xp_save_ptr = xp_save.dataPtr();
amrex::Real* const AMREX_RESTRICT yp_save_ptr = yp_save.dataPtr();
amrex::Real* const AMREX_RESTRICT zp_save_ptr = zp_save.dataPtr();
amrex::Real* const AMREX_RESTRICT uxp_save_ptr = uxp_save.dataPtr();
amrex::Real* const AMREX_RESTRICT uyp_save_ptr = uyp_save.dataPtr();
amrex::Real* const AMREX_RESTRICT uzp_save_ptr = uzp_save.dataPtr();
amrex::ParallelFor( np,
[=] AMREX_GPU_DEVICE (long i) {
ParticleReal xp, yp, zp;
GetPosition(i, xp, yp, zp);
xp_save_ptr[i] = xp;
yp_save_ptr[i] = yp;
zp_save_ptr[i] = zp;
uxp_save_ptr[i] = ux[i];
uyp_save_ptr[i] = uy[i];
uzp_save_ptr[i] = uz[i];
});
}
const bool do_scale = not done_injecting_lev;
const Real v_boost = WarpX::beta_boost*PhysConst::c;
PhysicalParticleContainer::PushPX(pti, exfab, eyfab, ezfab, bxfab, byfab, bzfab,
ngE, e_is_nodal, offset, np_to_push, lev, gather_lev, dt,
ScaleFields(do_scale, dt, zinject_plane_lev_previous,
vzbeam_ave_boosted, v_boost),
a_dt_type);
if (!done_injecting_lev) {
ParticleReal* AMREX_RESTRICT x_save = xp_save.dataPtr();
ParticleReal* AMREX_RESTRICT y_save = yp_save.dataPtr();
ParticleReal* AMREX_RESTRICT z_save = zp_save.dataPtr();
ParticleReal* AMREX_RESTRICT ux_save = uxp_save.dataPtr();
ParticleReal* AMREX_RESTRICT uy_save = uyp_save.dataPtr();
ParticleReal* AMREX_RESTRICT uz_save = uzp_save.dataPtr();
// Undo the push for particles not injected yet.
// The zp are advanced a fixed amount.
const Real z_plane_lev = zinject_plane_lev;
const Real vz_ave_boosted = vzbeam_ave_boosted;
const bool rigid = rigid_advance;
const Real inv_csq = 1./(PhysConst::c*PhysConst::c);
amrex::ParallelFor( pti.numParticles(),
[=] AMREX_GPU_DEVICE (long i) {
ParticleReal xp, yp, zp;
GetPosition(i, xp, yp, zp);
if (zp <= z_plane_lev) {
ux[i] = ux_save[i];
uy[i] = uy_save[i];
uz[i] = uz_save[i];
xp = x_save[i];
yp = y_save[i];
if (rigid) {
zp = z_save[i] + dt*vz_ave_boosted;
}
else {
const Real gi = 1./std::sqrt(1. + (ux[i]*ux[i] + uy[i]*uy[i] + uz[i]*uz[i])*inv_csq);
zp = z_save[i] + dt*uz[i]*gi;
}
SetPosition(i, xp, yp, zp);
}
});
}
}
void
RigidInjectedParticleContainer::Evolve (int lev,
const MultiFab& Ex, const MultiFab& Ey, const MultiFab& Ez,
const MultiFab& Bx, const MultiFab& By, const MultiFab& Bz,
const MultiFab& Ex_avg, const MultiFab& Ey_avg, const MultiFab& Ez_avg,
const MultiFab& Bx_avg, const MultiFab& By_avg, const MultiFab& Bz_avg,
MultiFab& jx, MultiFab& jy, MultiFab& jz,
MultiFab* cjx, MultiFab* cjy, MultiFab* cjz,
MultiFab* rho, MultiFab* crho,
const MultiFab* cEx, const MultiFab* cEy, const MultiFab* cEz,
const MultiFab* cBx, const MultiFab* cBy, const MultiFab* cBz,
Real t, Real dt, DtType a_dt_type)
{
// Update location of injection plane in the boosted frame
zinject_plane_lev_previous = zinject_plane_levels[lev];
zinject_plane_levels[lev] -= dt*WarpX::beta_boost*PhysConst::c;
zinject_plane_lev = zinject_plane_levels[lev];
// Set the done injecting flag whan the inject plane moves out of the
// simulation domain.
// It is much easier to do this check, rather than checking if all of the
// particles have crossed the inject plane.
const Real* plo = Geom(lev).ProbLo();
const Real* phi = Geom(lev).ProbHi();
const int zdir = AMREX_SPACEDIM-1;
done_injecting[lev] = ((zinject_plane_levels[lev] < plo[zdir] && WarpX::moving_window_v + WarpX::beta_boost*PhysConst::c >= 0.) ||
(zinject_plane_levels[lev] > phi[zdir] && WarpX::moving_window_v + WarpX::beta_boost*PhysConst::c <= 0.));
done_injecting_lev = done_injecting[lev];
PhysicalParticleContainer::Evolve (lev,
Ex, Ey, Ez,
Bx, By, Bz,
Ex_avg, Ey_avg, Ez_avg,
Bx_avg, By_avg, Bz_avg,
jx, jy, jz,
cjx, cjy, cjz,
rho, crho,
cEx, cEy, cEz,
cBx, cBy, cBz,
t, dt, a_dt_type);
}
void
RigidInjectedParticleContainer::PushP (int lev, Real dt,
const MultiFab& Ex, const MultiFab& Ey, const MultiFab& Ez,
const MultiFab& Bx, const MultiFab& By, const MultiFab& Bz)
{
WARPX_PROFILE("RigidInjectedParticleContainer::PushP");
if (do_not_push) return;
const std::array<Real,3>& dx = WarpX::CellSize(std::max(lev,0));
#ifdef _OPENMP
#pragma omp parallel
#endif
{
for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
{
amrex::Box box = pti.tilebox();
box.grow(Ex.nGrow());
const long np = pti.numParticles();
// Data on the grid
const FArrayBox& exfab = Ex[pti];
const FArrayBox& eyfab = Ey[pti];
const FArrayBox& ezfab = Ez[pti];
const FArrayBox& bxfab = Bx[pti];
const FArrayBox& byfab = By[pti];
const FArrayBox& bzfab = Bz[pti];
const auto getPosition = GetParticlePosition(pti);
const auto getExternalE = GetExternalEField(pti);
const auto getExternalB = GetExternalBField(pti);
const auto& xyzmin = WarpX::GetInstance().LowerCornerWithGalilean(box,m_v_galilean,lev);
const Dim3 lo = lbound(box);
bool galerkin_interpolation = WarpX::galerkin_interpolation;
int nox = WarpX::nox;
int n_rz_azimuthal_modes = WarpX::n_rz_azimuthal_modes;
amrex::GpuArray<amrex::Real, 3> dx_arr = {dx[0], dx[1], dx[2]};
amrex::GpuArray<amrex::Real, 3> xyzmin_arr = {xyzmin[0], xyzmin[1], xyzmin[2]};
amrex::Array4<const amrex::Real> const& ex_arr = exfab.array();
amrex::Array4<const amrex::Real> const& ey_arr = eyfab.array();
amrex::Array4<const amrex::Real> const& ez_arr = ezfab.array();
amrex::Array4<const amrex::Real> const& bx_arr = bxfab.array();
amrex::Array4<const amrex::Real> const& by_arr = byfab.array();
amrex::Array4<const amrex::Real> const& bz_arr = bzfab.array();
amrex::IndexType const ex_type = exfab.box().ixType();
amrex::IndexType const ey_type = eyfab.box().ixType();
amrex::IndexType const ez_type = ezfab.box().ixType();
amrex::IndexType const bx_type = bxfab.box().ixType();
amrex::IndexType const by_type = byfab.box().ixType();
amrex::IndexType const bz_type = bzfab.box().ixType();
auto& attribs = pti.GetAttribs();
amrex::ParticleReal* const AMREX_RESTRICT uxpp = attribs[PIdx::ux].dataPtr();
amrex::ParticleReal* const AMREX_RESTRICT uypp = attribs[PIdx::uy].dataPtr();
amrex::ParticleReal* const AMREX_RESTRICT uzpp = attribs[PIdx::uz].dataPtr();
int* AMREX_RESTRICT ion_lev = nullptr;
if (do_field_ionization) {
ion_lev = pti.GetiAttribs(particle_icomps["ionization_level"]).dataPtr();
}
// Save the position and momenta, making copies
amrex::Gpu::DeviceVector<ParticleReal> uxp_save(np);
amrex::Gpu::DeviceVector<ParticleReal> uyp_save(np);
amrex::Gpu::DeviceVector<ParticleReal> uzp_save(np);
ParticleReal* const AMREX_RESTRICT ux_save = uxp_save.dataPtr();
ParticleReal* const AMREX_RESTRICT uy_save = uyp_save.dataPtr();
ParticleReal* const AMREX_RESTRICT uz_save = uzp_save.dataPtr();
// Loop over the particles and update their momentum
const amrex::Real q = this->charge;
const amrex::Real m = this-> mass;
const auto pusher_algo = WarpX::particle_pusher_algo;
const auto do_crr = do_classical_radiation_reaction;
amrex::ParallelFor( np, [=] AMREX_GPU_DEVICE (long ip)
{
ux_save[ip] = uxpp[ip];
uy_save[ip] = uypp[ip];
uz_save[ip] = uzpp[ip];
amrex::ParticleReal xp, yp, zp;
getPosition(ip, xp, yp, zp);
amrex::ParticleReal Exp = 0._rt, Eyp = 0._rt, Ezp = 0._rt;
amrex::ParticleReal Bxp = 0._rt, Byp = 0._rt, Bzp = 0._rt;
// first gather E and B to the particle positions
doGatherShapeN(xp, yp, zp, Exp, Eyp, Ezp, Bxp, Byp, Bzp,
ex_arr, ey_arr, ez_arr, bx_arr, by_arr, bz_arr,
ex_type, ey_type, ez_type, bx_type, by_type, bz_type,
dx_arr, xyzmin_arr, lo, n_rz_azimuthal_modes,
nox, galerkin_interpolation);
getExternalE(ip, Exp, Eyp, Ezp);
getExternalB(ip, Bxp, Byp, Bzp);
if (do_crr) {
amrex::Real qp = q;
if (ion_lev) { qp *= ion_lev[ip]; }
UpdateMomentumBorisWithRadiationReaction(uxpp[ip], uypp[ip], uzpp[ip],
Exp, Eyp, Ezp, Bxp,
Byp, Bzp, qp, m, dt);
} else if (pusher_algo == ParticlePusherAlgo::Boris) {
amrex::Real qp = q;
if (ion_lev) { qp *= ion_lev[ip]; }
UpdateMomentumBoris( uxpp[ip], uypp[ip], uzpp[ip],
Exp, Eyp, Ezp, Bxp,
Byp, Bzp, qp, m, dt);
} else if (pusher_algo == ParticlePusherAlgo::Vay) {
amrex::Real qp = q;
if (ion_lev){ qp *= ion_lev[ip]; }
UpdateMomentumVay( uxpp[ip], uypp[ip], uzpp[ip],
Exp, Eyp, Ezp, Bxp,
Byp, Bzp, qp, m, dt);
} else if (pusher_algo == ParticlePusherAlgo::HigueraCary) {
amrex::Real qp = q;
if (ion_lev){ qp *= ion_lev[ip]; }
UpdateMomentumHigueraCary( uxpp[ip], uypp[ip], uzpp[ip],
Exp, Eyp, Ezp, Bxp,
Byp, Bzp, qp, m, dt);
} else {
amrex::Abort("Unknown particle pusher");
}
});
// Undo the push for particles not injected yet.
// It is assumed that PushP will only be called on the first and last steps
// and that no particles will cross zinject_plane.
const ParticleReal zz = zinject_plane_levels[lev];
amrex::ParallelFor( pti.numParticles(), [=] AMREX_GPU_DEVICE (long i)
{
ParticleReal xp, yp, zp;
getPosition(i, xp, yp, zp);
if (zp <= zz) {
uxpp[i] = ux_save[i];
uypp[i] = uy_save[i];
uzpp[i] = uz_save[i];
}
});
amrex::Gpu::synchronize();
}
}
}
|