aboutsummaryrefslogtreecommitdiff
path: root/Source/PhysicalParticleContainer.cpp
blob: 3e26097f05ad8d13b1ac3f16592ec53e49504305 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
#include <limits>
#include <sstream>

#include <ParticleContainer.H>
#include <WarpX_f.H>
#include <WarpX.H>
#include <WarpXConst.H>
#include <WarpXWrappers.h>


using namespace amrex;

PhysicalParticleContainer::PhysicalParticleContainer (AmrCore* amr_core, int ispecies,
                                                      const std::string& name)
    : WarpXParticleContainer(amr_core, ispecies),
      species_name(name)
{
    plasma_injector.reset(new PlasmaInjector(species_id, species_name));
    charge = plasma_injector->getCharge();
    mass = plasma_injector->getMass();

    ParmParse pp(species_name);

    pp.query("boost_adjust_transverse_positions", boost_adjust_transverse_positions);

}

void PhysicalParticleContainer::InitData()
{
    AddParticles(0); // Note - add on level 0
    if (maxLevel() > 0) {
        Redistribute();  // We then redistribute
    }
}

void PhysicalParticleContainer::MapParticletoBoostedFrame(Real& x, Real& y, Real& z, std::array<Real, 3>& u)
{
    // Map the particles from the lab frame to the boosted frame.
    // This boosts the particle to the lab frame and calculates
    // the particle time in the boosted frame. It then maps
    // the position to the time in the boosted frame.

    // For now, start with the assumption that this will only happen
    // at the start of the simulation.
    const Real t_lab = 0.;

    const Real uz_boost = WarpX::gamma_boost*WarpX::beta_boost*PhysConst::c;

    // tpr is the particle's time in the boosted frame
    Real tpr = WarpX::gamma_boost*t_lab - uz_boost*z/(PhysConst::c*PhysConst::c);

    // The particle's transformed location in the boosted frame
    Real xpr = x;
    Real ypr = y;
    Real zpr = WarpX::gamma_boost*z - uz_boost*t_lab;

    // transform u and gamma to the boosted frame
    Real gamma_lab = std::sqrt(1. + (u[0]*u[0] + u[1]*u[1] + u[2]*u[2])/(PhysConst::c*PhysConst::c));
    // u[0] = u[0];
    // u[1] = u[1];
    u[2] = WarpX::gamma_boost*u[2] - uz_boost*gamma_lab;
    Real gammapr = std::sqrt(1. + (u[0]*u[0] + u[1]*u[1] + u[2]*u[2])/(PhysConst::c*PhysConst::c));

    Real vxpr = u[0]/gammapr;
    Real vypr = u[1]/gammapr;
    Real vzpr = u[2]/gammapr;

    // Move the particles to where they will be at t = 0 in the boosted frame
    if (boost_adjust_transverse_positions) {
      x = xpr - tpr*vxpr;
      y = ypr - tpr*vypr;
    }

    z = zpr - tpr*vzpr;

}

void
PhysicalParticleContainer::AddGaussianBeam(Real x_m, Real y_m, Real z_m,
                                           Real x_rms, Real y_rms, Real z_rms,
                                           Real q_tot, long npart) {

    const Geometry& geom     = m_gdb->Geom(0);
    RealBox containing_bx = geom.ProbDomain();

    std::mt19937_64 mt(0451);
    std::normal_distribution<double> distx(x_m, x_rms);
    std::normal_distribution<double> disty(y_m, y_rms);
    std::normal_distribution<double> distz(z_m, z_rms);

    std::array<Real,PIdx::nattribs> attribs;
    attribs.fill(0.0);

    if (ParallelDescriptor::IOProcessor()) {
       std::array<Real, 3> u;
       Real weight;
       for (long i = 0; i < npart; ++i) {
#if ( AMREX_SPACEDIM == 3 )
            weight = q_tot/npart/charge;
            Real x = distx(mt);
            Real y = disty(mt);
            Real z = distz(mt);
#elif ( AMREX_SPACEDIM == 2 )
            weight = q_tot/npart/charge/y_rms;
            Real x = distx(mt);
            Real y = 0.;
            Real z = distz(mt);
#endif
        if (plasma_injector->insideBounds(x, y, z)) {
	    plasma_injector->getMomentum(u, x, y, z);
            if (WarpX::gamma_boost > 1.) {
                MapParticletoBoostedFrame(x, y, z, u);
            }
            attribs[PIdx::ux] = u[0];
            attribs[PIdx::uy] = u[1];
            attribs[PIdx::uz] = u[2];
            attribs[PIdx::w ] = weight;

            AddOneParticle(0, 0, 0, x, y, z, attribs);
            }
        }
    }
    Redistribute();
}

void
PhysicalParticleContainer::AddParticles (int lev)
{
    BL_PROFILE("PhysicalParticleContainer::AddParticles()");

    if (plasma_injector->add_single_particle) {
        AddNParticles(lev, 1,
                      &(plasma_injector->single_particle_pos[0]),
                      &(plasma_injector->single_particle_pos[1]),
                      &(plasma_injector->single_particle_pos[2]),
                      &(plasma_injector->single_particle_vel[0]),
                      &(plasma_injector->single_particle_vel[1]),
                      &(plasma_injector->single_particle_vel[2]),
                      1, &(plasma_injector->single_particle_weight), 0);
        return;
    }

    if (plasma_injector->gaussian_beam) {
        AddGaussianBeam(plasma_injector->x_m,
                        plasma_injector->y_m,
                        plasma_injector->z_m,
                        plasma_injector->x_rms,
                        plasma_injector->y_rms,
                        plasma_injector->z_rms,
                        plasma_injector->q_tot,
                        plasma_injector->npart);


        return;
    }

    if ( plasma_injector->doInjection() ) {
        AddPlasma( lev );
    }
}

/**
 * Create new macroparticles for this species, with a fixed
 * number of particles per cell (in the cells of `part_realbox`).
 * The new particles are only created inside the intersection of `part_realbox`
 * with the local grid for the current proc.
 * @param lev the index of the refinement level
 * @param part_realbox the box in which new particles should be created
 * (this box should correspond to an integer number of cells in each direction,
 * but its boundaries need not be aligned with the actual cells of the simulation)
 */
void
PhysicalParticleContainer::AddPlasma(int lev, RealBox part_realbox )
{

    // If no part_realbox is provided, initialize particles in the whole domain
    const Geometry& geom = Geom(lev);
    if (!part_realbox.ok()) part_realbox = geom.ProbDomain();

    int num_ppc = plasma_injector->num_particles_per_cell;

    const Real* dx = geom.CellSize();

    Real scale_fac;
#if AMREX_SPACEDIM==3
    scale_fac = dx[0]*dx[1]*dx[2]/num_ppc;
#elif AMREX_SPACEDIM==2
    scale_fac = dx[0]*dx[1]/num_ppc;
#endif

#ifdef _OPENMP
    // First touch all tiles in the map in serial
    for (MFIter mfi = MakeMFIter(lev); mfi.isValid(); ++mfi) {
        const int grid_id = mfi.index();
        const int tile_id = mfi.LocalTileIndex();
        GetParticles(lev)[std::make_pair(grid_id, tile_id)];
    }
#endif

#ifdef _OPENMP
#pragma omp parallel if (not WarpX::serialize_ics)
#endif
    {
        std::array<Real,PIdx::nattribs> attribs;
        attribs.fill(0.0);

        // Loop through the tiles
        for (MFIter mfi = MakeMFIter(lev); mfi.isValid(); ++mfi) {

            const Box& tile_box  = mfi.tilebox();
            const RealBox tile_realbox = WarpX::getRealBox(tile_box, lev);

            // Find the cells of part_box that overlap with tile_realbox
            // If there is no overlap, just go to the next tile in the loop
            RealBox overlap_realbox;
            Box overlap_box;
            Real ncells_adjust;
            bool no_overlap = 0;

            for (int dir=0; dir<AMREX_SPACEDIM; dir++) {
                if ( tile_realbox.lo(dir) < part_realbox.hi(dir) ) {
                    ncells_adjust = std::floor( (tile_realbox.lo(dir) - part_realbox.lo(dir))/dx[dir] );
                    overlap_realbox.setLo( dir, part_realbox.lo(dir) + std::max(ncells_adjust, 0.) * dx[dir]);
                } else {
                    no_overlap = 1; break;
                }
                if ( tile_realbox.hi(dir) > part_realbox.lo(dir) ) {
                    ncells_adjust = std::floor( (part_realbox.hi(dir) - tile_realbox.hi(dir))/dx[dir] );
                    overlap_realbox.setHi( dir, part_realbox.hi(dir) - std::max(ncells_adjust, 0.) * dx[dir]);
                } else {
                    no_overlap = 1; break;
                }
                // Count the number of cells in this direction in overlap_realbox
                overlap_box.setSmall( dir, 0 );
                overlap_box.setBig( dir,
				    int( round((overlap_realbox.hi(dir)-overlap_realbox.lo(dir))/dx[dir] )) - 1);
            }
            if (no_overlap == 1) continue; // Go to the next tile

            const int grid_id = mfi.index();
            const int tile_id = mfi.LocalTileIndex();

            // Loop through the cells of overlap_box and inject
            // the corresponding particles
            const auto& overlap_corner = overlap_realbox.lo();
            for (IntVect iv = overlap_box.smallEnd();
                 iv <= overlap_box.bigEnd(); overlap_box.next(iv)) {
                for (int i_part=0; i_part<num_ppc;i_part++) {
                    std::array<Real, 3> r;
                    plasma_injector->getPositionUnitBox(r, i_part);
#if ( AMREX_SPACEDIM == 3 )
                    Real x = overlap_corner[0] + (iv[0] + r[0])*dx[0];
                    Real y = overlap_corner[1] + (iv[1] + r[1])*dx[1];
                    Real z = overlap_corner[2] + (iv[2] + r[2])*dx[2];
#elif ( AMREX_SPACEDIM == 2 )
                    Real x = overlap_corner[0] + (iv[0] + r[0])*dx[0];
                    Real y = 0;
                    Real z = overlap_corner[1] + (iv[1] + r[1])*dx[1];
#endif
                    // If the new particle is not inside the tile box,
                    // go to the next generated particle.
#if ( AMREX_SPACEDIM == 3 )
                    if(!tile_realbox.contains( RealVect{x, y, z} )) continue;
#elif ( AMREX_SPACEDIM == 2 )
                    if(!tile_realbox.contains( RealVect{x, z} )) continue;
#endif

                    Real dens;
                    std::array<Real, 3> u;
                    if (WarpX::gamma_boost == 1.){
                      // Lab-frame simulation
                      // If the particle is not within the species's
                      // xmin, xmax, ymin, ymax, zmin, zmax, go to
                      // the next generated particle.
                      if (!plasma_injector->insideBounds(x, y, z)) continue;
                      plasma_injector->getMomentum(u, x, y, z);
                      dens = plasma_injector->getDensity(x, y, z);
                    } else {
                      // Boosted-frame simulation
                      Real c = PhysConst::c;
                      Real gamma_boost = WarpX::gamma_boost;
                      Real beta_boost = WarpX::beta_boost;
                      // Since the user provides the density distribution
                      // at t_lab=0 and in the lab-frame coordinates,
                      // we need to find the lab-frame position of this
                      // particle at t_lab=0, from its boosted-frame coordinates
                      // Assuming ballistic motion, this is given by:
                      // z0_lab = gamma*( z_boost*(1-beta*betaz_lab) - ct_boost*(betaz_lab-beta) )
                      // where betaz_lab is the speed of the particle in the lab frame
                      // 
                      // In order for this equation to be solvable, betaz_lab
                      // is explicitly assumed to have no dependency on z0_lab
                      plasma_injector->getMomentum(u, x, y, 0.); // No z0_lab dependency
                      // At this point u is the lab-frame momentum
                      // => Apply the above formula for z0_lab
                      Real gamma_lab = std::sqrt( 1 + (u[0]*u[0] + u[1]*u[1] + u[2]*u[2])/(c*c) );
                      Real betaz_lab = u[2]/gamma_lab/c;
                      Real t = WarpX::GetInstance().gett_new(lev);
                      Real z0_lab = gamma_boost * ( z*(1-beta_boost*betaz_lab) - c*t*(betaz_lab-beta_boost) );
                      // If the particle is not within the lab-frame zmin, zmax, etc.
                      // go to the next generated particle.
                      if (!plasma_injector->insideBounds(x, y, z0_lab)) continue;
                      // call `getDensity` with lab-frame parameters
                      dens = plasma_injector->getDensity(x, y, z0_lab);
                      // At this point u and dens are the lab-frame quantities
                      // => Perform Lorentz transform
                      dens = gamma_boost * dens * ( 1 - beta_boost*betaz_lab );
                      u[2] = gamma_boost * ( u[2] -beta_boost*c*gamma_lab );
                    }
                    attribs[PIdx::w ] = dens * scale_fac;
                    attribs[PIdx::ux] = u[0];
                    attribs[PIdx::uy] = u[1];
                    attribs[PIdx::uz] = u[2];

#ifdef WARPX_STORE_OLD_PARTICLE_ATTRIBS
                    attribs[PIdx::xold] = x;
                    attribs[PIdx::yold] = y;
                    attribs[PIdx::zold] = z;
                    
                    attribs[PIdx::uxold] = u[0];
                    attribs[PIdx::uyold] = u[1];
                    attribs[PIdx::uzold] = u[2];
#endif
                    
                    AddOneParticle(lev, grid_id, tile_id, x, y, z, attribs);
                }
            }
        }
    }
}

#ifdef WARPX_DO_ELECTROSTATIC
void
PhysicalParticleContainer::
FieldGatherES (const amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E,
               const amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > >& masks)
{

    const int num_levels = E.size();
    const int ng = E[0][0]->nGrow();

    if (num_levels == 1) {
        const int lev = 0;
        const auto& gm = m_gdb->Geom(lev);
        const auto& ba = m_gdb->ParticleBoxArray(lev);

        BoxArray nba = ba;
        nba.surroundingNodes();

        const Real* dx  = gm.CellSize();
        const Real* plo = gm.ProbLo();

        BL_ASSERT(OnSameGrids(lev, *E[lev][0]));

        for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) {
            const Box& box = nba[pti];

            const auto& particles = pti.GetArrayOfStructs();
            int nstride = particles.dataShape().first;
            const long np  = pti.numParticles();

            auto& attribs = pti.GetAttribs();
            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];
#if AMREX_SPACEDIM == 3
            auto& Ezp = attribs[PIdx::Ez];
#endif
            Exp.assign(np,0.0);
            Eyp.assign(np,0.0);
#if AMREX_SPACEDIM == 3
            Ezp.assign(np,0.0);
#endif

            const FArrayBox& exfab = (*E[lev][0])[pti];
            const FArrayBox& eyfab = (*E[lev][1])[pti];
#if AMREX_SPACEDIM == 3
            const FArrayBox& ezfab = (*E[lev][2])[pti];
#endif

            WRPX_INTERPOLATE_CIC(particles.data(), nstride, np,
                                 Exp.data(), Eyp.data(),
#if AMREX_SPACEDIM == 3
                                 Ezp.data(),
#endif
                                 exfab.dataPtr(), eyfab.dataPtr(),
#if AMREX_SPACEDIM == 3
                                 ezfab.dataPtr(),
#endif
                                 box.loVect(), box.hiVect(), plo, dx, &ng);
        }

        return;
    }

    const BoxArray& fine_BA = E[1][0]->boxArray();
    const DistributionMapping& fine_dm = E[1][0]->DistributionMap();
    BoxArray coarsened_fine_BA = fine_BA;
    coarsened_fine_BA.coarsen(IntVect(AMREX_D_DECL(2,2,2)));

    MultiFab coarse_Ex(coarsened_fine_BA, fine_dm, 1, 1);
    MultiFab coarse_Ey(coarsened_fine_BA, fine_dm, 1, 1);
#if AMREX_SPACEDIM == 3
    MultiFab coarse_Ez(coarsened_fine_BA, fine_dm, 1, 1);
#endif

    coarse_Ex.copy(*E[0][0], 0, 0, 1, 1, 1);
    coarse_Ey.copy(*E[0][1], 0, 0, 1, 1, 1);
#if AMREX_SPACEDIM == 3
    coarse_Ez.copy(*E[0][2], 0, 0, 1, 1, 1);
#endif

    for (int lev = 0; lev < num_levels; ++lev) {
        const auto& gm = m_gdb->Geom(lev);
        const auto& ba = m_gdb->ParticleBoxArray(lev);

        BoxArray nba = ba;
        nba.surroundingNodes();

        const Real* dx  = gm.CellSize();
        const Real* plo = gm.ProbLo();

        BL_ASSERT(OnSameGrids(lev, *E[lev][0]));

        for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) {
            const Box& box = nba[pti];

            const auto& particles = pti.GetArrayOfStructs();
            int nstride = particles.dataShape().first;
            const long np  = pti.numParticles();

            auto& attribs = pti.GetAttribs();
            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];
#if AMREX_SPACEDIM == 3
            auto& Ezp = attribs[PIdx::Ez];
#endif
            Exp.assign(np,0.0);
            Eyp.assign(np,0.0);
#if AMREX_SPACEDIM == 3
            Ezp.assign(np,0.0);
#endif

            const FArrayBox& exfab = (*E[lev][0])[pti];
            const FArrayBox& eyfab = (*E[lev][1])[pti];
#if AMREX_SPACEDIM == 3
            const FArrayBox& ezfab = (*E[lev][2])[pti];
#endif

            if (lev == 0) {
                WRPX_INTERPOLATE_CIC(particles.data(), nstride, np,
                                     Exp.data(), Eyp.data(),
#if AMREX_SPACEDIM == 3
                Ezp.data(),
#endif
                                exfab.dataPtr(), eyfab.dataPtr(),
#if AMREX_SPACEDIM == 3
                                ezfab.dataPtr(),
#endif
                                box.loVect(), box.hiVect(), plo, dx, &ng);
            } else {

                const FArrayBox& exfab_coarse = coarse_Ex[pti];
                const FArrayBox& eyfab_coarse = coarse_Ey[pti];
#if AMREX_SPACEDIM == 3
                const FArrayBox& ezfab_coarse = coarse_Ez[pti];
#endif
                const Box& coarse_box = coarsened_fine_BA[pti];
                const Real* coarse_dx = Geom(0).CellSize();

                WRPX_INTERPOLATE_CIC_TWO_LEVELS(particles.data(), nstride, np,
                                                Exp.data(), Eyp.data(),
#if AMREX_SPACEDIM == 3
                                                Ezp.data(),
#endif
                                                exfab.dataPtr(), eyfab.dataPtr(),
#if AMREX_SPACEDIM == 3
                                                ezfab.dataPtr(),
#endif
                                                box.loVect(), box.hiVect(), dx,
                                                exfab_coarse.dataPtr(), eyfab_coarse.dataPtr(),
#if AMREX_SPACEDIM == 3
                                                ezfab_coarse.dataPtr(),
#endif
                                                (*masks[1])[pti].dataPtr(),
                                                coarse_box.loVect(), coarse_box.hiVect(), coarse_dx,
                                                plo, &ng, &lev);
            }
        }
    }
}

void
PhysicalParticleContainer::EvolveES (const Vector<std::array<std::unique_ptr<MultiFab>, 3> >& E,
                                           Vector<std::unique_ptr<MultiFab> >& rho,
                                     Real t, Real dt)
{
    BL_PROFILE("PPC::EvolveES()");

    int num_levels = rho.size();
    for (int lev = 0; lev < num_levels; ++lev) {
        BL_ASSERT(OnSameGrids(lev, *rho[lev]));
        const auto& gm = m_gdb->Geom(lev);
        const RealBox& prob_domain = gm.ProbDomain();
	for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) {
            // Particle structs
            auto& particles = pti.GetArrayOfStructs();
            int nstride = particles.dataShape().first;
            const long np  = pti.numParticles();

            // Particle attributes
            auto& attribs = pti.GetAttribs();
            auto& uxp = attribs[PIdx::ux];
            auto& uyp = attribs[PIdx::uy];

#if AMREX_SPACEDIM == 3
            auto& uzp = attribs[PIdx::uz];
#endif

            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];

#if AMREX_SPACEDIM == 3
            auto& Ezp = attribs[PIdx::Ez];
#endif
            //
            // Particle Push
            //
            WRPX_PUSH_LEAPFROG(particles.data(), nstride, np,
                               uxp.data(), uyp.data(),
#if AMREX_SPACEDIM == 3
                               uzp.data(),
#endif
                               Exp.data(), Eyp.data(),
#if AMREX_SPACEDIM == 3
                               Ezp.data(),
#endif
                               &this->charge, &this->mass, &dt,
                               prob_domain.lo(), prob_domain.hi());
        }
    }
}
#endif // WARPX_DO_ELECTROSTATIC

void
PhysicalParticleContainer::FieldGather (int lev,
                                        const MultiFab& Ex, const MultiFab& Ey, const MultiFab& Ez,
                                        const MultiFab& Bx, const MultiFab& By, const MultiFab& Bz)
{
    const std::array<Real,3>& dx = WarpX::CellSize(lev);

    // WarpX assumes the same number of guard cells for Ex, Ey, Ez, Bx, By, Bz
    long ng = Ex.nGrow();

    BL_ASSERT(OnSameGrids(lev,Ex));

    MultiFab* cost = WarpX::getCosts(lev);

#ifdef _OPENMP
#pragma omp parallel
#endif
    {
	Vector<Real> xp, yp, zp;

	for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
	{
            Real wt = ParallelDescriptor::second();

	    const Box& box = pti.validbox();

            auto& attribs = pti.GetAttribs();

            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];
            auto& Ezp = attribs[PIdx::Ez];
            auto& Bxp = attribs[PIdx::Bx];
            auto& Byp = attribs[PIdx::By];
            auto& Bzp = attribs[PIdx::Bz];

            const long np = pti.numParticles();

	    // Data on the grid
	    const FArrayBox& exfab = Ex[pti];
	    const FArrayBox& eyfab = Ey[pti];
	    const FArrayBox& ezfab = Ez[pti];
	    const FArrayBox& bxfab = Bx[pti];
	    const FArrayBox& byfab = By[pti];
	    const FArrayBox& bzfab = Bz[pti];

	    Exp.assign(np,0.0);
	    Eyp.assign(np,0.0);
	    Ezp.assign(np,0.0);
	    Bxp.assign(np,0.0);
	    Byp.assign(np,0.0);
	    Bzp.assign(np,0.0);

	    //
	    // copy data from particle container to temp arrays
	    //
            pti.GetPosition(xp, yp, zp);

            const std::array<Real,3>& xyzmin = WarpX::LowerCorner(box, lev);
            const int* ixyzmin = box.loVect();

	    //
	    // Field Gather
	    //
	    const int ll4symtry          = false;
	    const int l_lower_order_in_v = warpx_l_lower_order_in_v();
            long lvect_fieldgathe = 64;
	    warpx_geteb_energy_conserving(
	       &np, xp.data(), yp.data(), zp.data(),
	       Exp.data(),Eyp.data(),Ezp.data(),
	       Bxp.data(),Byp.data(),Bzp.data(),
               ixyzmin,
               &xyzmin[0], &xyzmin[1], &xyzmin[2],
               &dx[0], &dx[1], &dx[2],
	       &WarpX::nox, &WarpX::noy, &WarpX::noz,
               BL_TO_FORTRAN_ANYD(exfab),
	       BL_TO_FORTRAN_ANYD(eyfab),
	       BL_TO_FORTRAN_ANYD(ezfab),
               BL_TO_FORTRAN_ANYD(bxfab),
	       BL_TO_FORTRAN_ANYD(byfab),
	       BL_TO_FORTRAN_ANYD(bzfab),
	       &ll4symtry, &l_lower_order_in_v,
	       &lvect_fieldgathe, &WarpX::field_gathering_algo);

            if (cost) {
                const Box& tbx = pti.tilebox();
                wt = (ParallelDescriptor::second() - wt) / tbx.d_numPts();
                (*cost)[pti].plus(wt, tbx);
            }
        }
    }
}

void
PhysicalParticleContainer::Evolve (int lev,
				   const MultiFab& Ex, const MultiFab& Ey, const MultiFab& Ez,
				   const MultiFab& Bx, const MultiFab& By, const MultiFab& Bz,
				   MultiFab& jx, MultiFab& jy, MultiFab& jz,
                                   MultiFab* rho, MultiFab* rho2,
                                   Real t, Real dt)
{
    BL_PROFILE("PPC::Evolve()");
    BL_PROFILE_VAR_NS("PPC::Evolve::Copy", blp_copy);
    BL_PROFILE_VAR_NS("PICSAR::FieldGather", blp_pxr_fg);
    BL_PROFILE_VAR_NS("PICSAR::ParticlePush", blp_pxr_pp);
    BL_PROFILE_VAR_NS("PICSAR::CurrentDeposition", blp_pxr_cd);
    BL_PROFILE_VAR_NS("PPC::Evolve::Accumulate", blp_accumulate);

    const std::array<Real,3>& dx = WarpX::CellSize(lev);

    const auto& mypc = WarpX::GetInstance().GetPartContainer();
    const int nstencilz_fdtd_nci_corr = mypc.nstencilz_fdtd_nci_corr;

    // WarpX assumes the same number of guard cells for Jx, Jy, Jz
    long ngJ = jx.nGrow();
    long ngJDeposit   = (WarpX::use_filter) ? ngJ +1   : ngJ;

    BL_ASSERT(OnSameGrids(lev,Ex));

    MultiFab* cost = WarpX::getCosts(lev);

#ifdef _OPENMP
#pragma omp parallel
#endif
    {
	Vector<Real> xp, yp, zp, giv;
        FArrayBox local_rho, local_jx, local_jy, local_jz;
        FArrayBox filtered_rho, filtered_jx, filtered_jy, filtered_jz;
        FArrayBox filtered_Ex, filtered_Ey, filtered_Ez;
        FArrayBox filtered_Bx, filtered_By, filtered_Bz;

	for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
	{
            Real wt = ParallelDescriptor::second();

	    const Box& box = pti.validbox();

            auto& attribs = pti.GetAttribs();

            auto&  wp = attribs[PIdx::w];
            auto& uxp = attribs[PIdx::ux];
            auto& uyp = attribs[PIdx::uy];
            auto& uzp = attribs[PIdx::uz];
            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];
            auto& Ezp = attribs[PIdx::Ez];
            auto& Bxp = attribs[PIdx::Bx];
            auto& Byp = attribs[PIdx::By];
            auto& Bzp = attribs[PIdx::Bz];

            const long np = pti.numParticles();

	    // Data on the grid
            FArrayBox const* exfab = &(Ex[pti]);
            FArrayBox const* eyfab = &(Ey[pti]);
            FArrayBox const* ezfab = &(Ez[pti]);
            FArrayBox const* bxfab = &(Bx[pti]);
            FArrayBox const* byfab = &(By[pti]);
            FArrayBox const* bzfab = &(Bz[pti]);

            if (warpx_use_fdtd_nci_corr())
            {
#if (AMREX_SPACEDIM == 2)
                const Box& tbox = amrex::grow(pti.tilebox(),{static_cast<int>(WarpX::nox),
                            static_cast<int>(WarpX::noz)});
#else
                const Box& tbox = amrex::grow(pti.tilebox(),{static_cast<int>(WarpX::nox),
                            static_cast<int>(WarpX::noy),
                            static_cast<int>(WarpX::noz)});
#endif

                // both 2d and 3d
                filtered_Ex.resize(amrex::convert(tbox,WarpX::Ex_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_Ex),
                                        BL_TO_FORTRAN_ANYD(filtered_Ex),
                                        BL_TO_FORTRAN_ANYD(Ex[pti]),
                                        mypc.fdtd_nci_stencilz_ex.data(),
                                        &nstencilz_fdtd_nci_corr);
                exfab = &filtered_Ex;

                filtered_Ez.resize(amrex::convert(tbox,WarpX::Ez_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_Ez),
                                        BL_TO_FORTRAN_ANYD(filtered_Ez),
                                        BL_TO_FORTRAN_ANYD(Ez[pti]),
                                        mypc.fdtd_nci_stencilz_by.data(),
                                        &nstencilz_fdtd_nci_corr);
                ezfab = &filtered_Ez;

                filtered_By.resize(amrex::convert(tbox,WarpX::By_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_By),
                                        BL_TO_FORTRAN_ANYD(filtered_By),
                                        BL_TO_FORTRAN_ANYD(By[pti]),
                                        mypc.fdtd_nci_stencilz_by.data(),
                                        &nstencilz_fdtd_nci_corr);
                byfab = &filtered_By;

#if (AMREX_SPACEDIM == 3)
                filtered_Ey.resize(amrex::convert(tbox,WarpX::Ey_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_Ey),
                                        BL_TO_FORTRAN_ANYD(filtered_Ey),
                                        BL_TO_FORTRAN_ANYD(Ey[pti]),
                                        mypc.fdtd_nci_stencilz_ex.data(),
                                        &nstencilz_fdtd_nci_corr);
                eyfab = &filtered_Ey;

                filtered_Bx.resize(amrex::convert(tbox,WarpX::Bx_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_Bx),
                                        BL_TO_FORTRAN_ANYD(filtered_Bx),
                                        BL_TO_FORTRAN_ANYD(Bx[pti]),
                                        mypc.fdtd_nci_stencilz_by.data(),
                                        &nstencilz_fdtd_nci_corr);
                bxfab = &filtered_Bx;

                filtered_Bz.resize(amrex::convert(tbox,WarpX::Bz_nodal_flag));
                WRPX_PXR_GODFREY_FILTER(BL_TO_FORTRAN_BOX(filtered_Bz),
                                        BL_TO_FORTRAN_ANYD(filtered_Bz),
                                        BL_TO_FORTRAN_ANYD(Bz[pti]),
                                        mypc.fdtd_nci_stencilz_ex.data(),
                                        &nstencilz_fdtd_nci_corr);
                bzfab = &filtered_Bz;
#endif
            }

	    FArrayBox& jxfab = jx[pti];
	    FArrayBox& jyfab = jy[pti];
	    FArrayBox& jzfab = jz[pti];

	    Exp.assign(np,0.0);
	    Eyp.assign(np,0.0);
	    Ezp.assign(np,0.0);
	    Bxp.assign(np,WarpX::B_external[0]);
	    Byp.assign(np,WarpX::B_external[1]);
	    Bzp.assign(np,WarpX::B_external[2]);

	    giv.resize(np);

	    //
	    // copy data from particle container to temp arrays
	    //
	    BL_PROFILE_VAR_START(blp_copy);
            pti.GetPosition(xp, yp, zp);
	    BL_PROFILE_VAR_STOP(blp_copy);

            const std::array<Real,3>& xyzmin_tile = WarpX::LowerCorner(pti.tilebox(), lev);
            const std::array<Real,3>& xyzmin_grid = WarpX::LowerCorner(box, lev);
            const int* ixyzmin_grid = box.loVect();

	    long lvect = 8;

            auto depositCharge = [&] (MultiFab* rhomf)
            {
                long ngRho = rhomf->nGrow();
                long ngRhoDeposit = (WarpX::use_filter) ? ngRho +1 : ngRho;

                Real* data_ptr;
                const int *rholen;
                FArrayBox& rhofab = (*rhomf)[pti];
                Box tile_box = convert(pti.tilebox(), IntVect::TheUnitVector());
                Box grown_box;
                const std::array<Real, 3>& xyzmin = xyzmin_tile;
                tile_box.grow(ngRho);
                if (WarpX::use_filter) {
                    grown_box = tile_box;
                    grown_box.grow(1);
                    local_rho.resize(grown_box);
                } else {
                    local_rho.resize(tile_box);
                }
                local_rho = 0.0;
                data_ptr = local_rho.dataPtr();
                rholen = local_rho.length();

#if (AMREX_SPACEDIM == 3)
                const long nx = rholen[0]-1-2*ngRhoDeposit;
                const long ny = rholen[1]-1-2*ngRhoDeposit;
                const long nz = rholen[2]-1-2*ngRhoDeposit;
#else
                const long nx = rholen[0]-1-2*ngRhoDeposit;
                const long ny = 0;
                const long nz = rholen[1]-1-2*ngRhoDeposit;
#endif
            	warpx_charge_deposition(data_ptr, &np,
                                        xp.data(), yp.data(), zp.data(), wp.data(),
                                        &this->charge,
                                        &xyzmin[0], &xyzmin[1], &xyzmin[2],
                                        &dx[0], &dx[1], &dx[2], &nx, &ny, &nz,
                                        &ngRhoDeposit, &ngRhoDeposit, &ngRhoDeposit,
                                        &WarpX::nox,&WarpX::noy,&WarpX::noz,
                                        &lvect, &WarpX::charge_deposition_algo);

                const int ncomp = 1;
                if (WarpX::use_filter) {

                    filtered_rho.resize(tile_box);
                    filtered_rho = 0;

                    WRPX_FILTER(local_rho.dataPtr(),
                                local_rho.loVect(),
                                local_rho.hiVect(),
                                filtered_rho.dataPtr(),
                                filtered_rho.loVect(),
                                filtered_rho.hiVect(),
                                ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(filtered_rho),
                                                BL_TO_FORTRAN_3D(rhofab), ncomp);


                } else {
                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(local_rho),
                                                BL_TO_FORTRAN_3D(rhofab), ncomp);
                }
            };

            if (rho) depositCharge(rho);

            if (! do_not_push)
            {
                //
                // Field Gather of Aux Data (i.e., the full solution)
                //
                const int ll4symtry          = false;
                const int l_lower_order_in_v = warpx_l_lower_order_in_v();
                long lvect_fieldgathe = 64;
                BL_PROFILE_VAR_START(blp_pxr_fg);

                warpx_geteb_energy_conserving(
                    &np, xp.data(), yp.data(), zp.data(),
                    Exp.data(),Eyp.data(),Ezp.data(),
                    Bxp.data(),Byp.data(),Bzp.data(),
                    ixyzmin_grid,
                    &xyzmin_grid[0], &xyzmin_grid[1], &xyzmin_grid[2],
                    &dx[0], &dx[1], &dx[2],
                    &WarpX::nox, &WarpX::noy, &WarpX::noz,
                    BL_TO_FORTRAN_ANYD(*exfab),
                    BL_TO_FORTRAN_ANYD(*eyfab),
                    BL_TO_FORTRAN_ANYD(*ezfab),
                    BL_TO_FORTRAN_ANYD(*bxfab),
                    BL_TO_FORTRAN_ANYD(*byfab),
                    BL_TO_FORTRAN_ANYD(*bzfab),
                    &ll4symtry, &l_lower_order_in_v,
                    &lvect_fieldgathe, &WarpX::field_gathering_algo);
                BL_PROFILE_VAR_STOP(blp_pxr_fg);

                //
                // Particle Push
                //
                BL_PROFILE_VAR_START(blp_pxr_pp);
                PushPX(pti, xp, yp, zp, giv, dt);
                BL_PROFILE_VAR_STOP(blp_pxr_pp);

                //
                // Current Deposition onto fine patch
                //

                BL_PROFILE_VAR_START(blp_pxr_cd);
                Real *jx_ptr, *jy_ptr, *jz_ptr;
                const int  *jxntot, *jyntot, *jzntot;
                Box tbx = convert(pti.tilebox(), WarpX::jx_nodal_flag);
                Box tby = convert(pti.tilebox(), WarpX::jy_nodal_flag);
                Box tbz = convert(pti.tilebox(), WarpX::jz_nodal_flag);
                Box gtbx, gtby, gtbz;

                const std::array<Real, 3>& xyzmin = xyzmin_tile;

                tbx.grow(ngJ);
                tby.grow(ngJ);
                tbz.grow(ngJ);

                if (WarpX::use_filter) {

                    gtbx = tbx;
                    gtbx.grow(1);

                    gtby = tby;
                    gtby.grow(1);

                    gtbz = tbz;
                    gtbz.grow(1);

                    local_jx.resize(gtbx);
                    local_jy.resize(gtby);
                    local_jz.resize(gtbz);
                } else {
                    local_jx.resize(tbx);
                    local_jy.resize(tby);
                    local_jz.resize(tbz);
                }

                local_jx = 0.0;
                local_jy = 0.0;
                local_jz = 0.0;

                jx_ptr = local_jx.dataPtr();
                jy_ptr = local_jy.dataPtr();
                jz_ptr = local_jz.dataPtr();

                jxntot = local_jx.length();
                jyntot = local_jy.length();
                jzntot = local_jz.length();

                warpx_current_deposition(
                    jx_ptr, &ngJDeposit, jxntot,
                    jy_ptr, &ngJDeposit, jyntot,
                    jz_ptr, &ngJDeposit, jzntot,
                    &np, xp.data(), yp.data(), zp.data(),
                    uxp.data(), uyp.data(), uzp.data(),
                    giv.data(), wp.data(), &this->charge,
                    &xyzmin[0], &xyzmin[1], &xyzmin[2],
                    &dt, &dx[0], &dx[1], &dx[2],
                    &WarpX::nox,&WarpX::noy,&WarpX::noz,
                    &lvect,&WarpX::current_deposition_algo);

                BL_PROFILE_VAR_STOP(blp_pxr_cd);

                BL_PROFILE_VAR_START(blp_accumulate);

                const int ncomp = 1;
                if (WarpX::use_filter) {

                    filtered_jx.resize(tbx);
                    filtered_jx = 0.0;

                    WRPX_FILTER(local_jx.dataPtr(),
                                local_jx.loVect(),
                                local_jx.hiVect(),
                                filtered_jx.dataPtr(),
                                filtered_jx.loVect(),
                                filtered_jx.hiVect(),
                                ncomp);

                    filtered_jy.resize(tby);
                    filtered_jy = 0.0;

                    WRPX_FILTER(local_jy.dataPtr(),
                                local_jy.loVect(),
                                local_jy.hiVect(),
                                filtered_jy.dataPtr(),
                                filtered_jy.loVect(),
                                filtered_jy.hiVect(),
                                ncomp);

                    filtered_jz.resize(tbz);
                    filtered_jz = 0.0;

                    WRPX_FILTER(local_jz.dataPtr(),
                                local_jz.loVect(),
                                local_jz.hiVect(),
                                filtered_jz.dataPtr(),
                                filtered_jz.loVect(),
                                filtered_jz.hiVect(),
                                ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(filtered_jx),
                                                BL_TO_FORTRAN_3D(jxfab), ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(filtered_jy),
                                                BL_TO_FORTRAN_3D(jyfab), ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(filtered_jz),
                                                BL_TO_FORTRAN_3D(jzfab), ncomp);

                } else {

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(local_jx),
                                                BL_TO_FORTRAN_3D(jxfab), ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(local_jy),
                                                BL_TO_FORTRAN_3D(jyfab), ncomp);

                    amrex_atomic_accumulate_fab(BL_TO_FORTRAN_3D(local_jz),
                                                BL_TO_FORTRAN_3D(jzfab), ncomp);
                }
                BL_PROFILE_VAR_STOP(blp_accumulate);

                //
                // copy particle data back
                //
                BL_PROFILE_VAR_START(blp_copy);
                pti.SetPosition(xp, yp, zp);
                BL_PROFILE_VAR_STOP(blp_copy);
            }

            if (rho2) depositCharge(rho2);

            if (cost) {
                const Box& tbx = pti.tilebox();
                wt = (ParallelDescriptor::second() - wt) / tbx.d_numPts();
                (*cost)[pti].plus(wt, tbx);
            }
        }
    }
}

void
PhysicalParticleContainer::PushPX(WarpXParIter& pti,
	                          Vector<Real>& xp, Vector<Real>& yp, Vector<Real>& zp,
                                  Vector<Real>& giv,
                                  Real dt)
{

    // This wraps the call to warpx_particle_pusher so that inheritors can modify the call.
    auto& attribs = pti.GetAttribs();
    auto& uxp = attribs[PIdx::ux];
    auto& uyp = attribs[PIdx::uy];
    auto& uzp = attribs[PIdx::uz];
    auto& Exp = attribs[PIdx::Ex];
    auto& Eyp = attribs[PIdx::Ey];
    auto& Ezp = attribs[PIdx::Ez];
    auto& Bxp = attribs[PIdx::Bx];
    auto& Byp = attribs[PIdx::By];
    auto& Bzp = attribs[PIdx::Bz];
    const long np  = pti.numParticles();

#ifdef WARPX_STORE_OLD_PARTICLE_ATTRIBS
    auto& xpold  = attribs[PIdx::xold];
    auto& ypold  = attribs[PIdx::yold];
    auto& zpold  = attribs[PIdx::zold];
    auto& uxpold = attribs[PIdx::uxold];
    auto& uypold = attribs[PIdx::uyold];
    auto& uzpold = attribs[PIdx::uzold];

    warpx_copy_attribs(&np, xp.data(), yp.data(), zp.data(),
                       uxp.data(), uyp.data(), uzp.data(),
                       xpold.data(), ypold.data(), zpold.data(),
                       uxpold.data(), uypold.data(), uzpold.data());                       

#endif
                           
    warpx_particle_pusher(&np, xp.data(), yp.data(), zp.data(),
                          uxp.data(), uyp.data(), uzp.data(), giv.data(),
                          Exp.dataPtr(), Eyp.dataPtr(), Ezp.dataPtr(),
                          Bxp.dataPtr(), Byp.dataPtr(), Bzp.dataPtr(),
                          &this->charge, &this->mass, &dt,
                          &WarpX::particle_pusher_algo);

}

void
PhysicalParticleContainer::PushP (int lev, Real dt,
                                  const MultiFab& Ex, const MultiFab& Ey, const MultiFab& Ez,
                                  const MultiFab& Bx, const MultiFab& By, const MultiFab& Bz)
{
    if (do_not_push) return;

    const std::array<Real,3>& dx = WarpX::CellSize(lev);

#ifdef _OPENMP
#pragma omp parallel
#endif
    {
	Vector<Real> xp, yp, zp, giv;

        for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
	{
	    const Box& box = pti.validbox();

            auto& attribs = pti.GetAttribs();

            auto& uxp = attribs[PIdx::ux];
            auto& uyp = attribs[PIdx::uy];
            auto& uzp = attribs[PIdx::uz];
            auto& Exp = attribs[PIdx::Ex];
            auto& Eyp = attribs[PIdx::Ey];
            auto& Ezp = attribs[PIdx::Ez];
            auto& Bxp = attribs[PIdx::Bx];
            auto& Byp = attribs[PIdx::By];
            auto& Bzp = attribs[PIdx::Bz];

            const long np = pti.numParticles();

	    // Data on the grid
	    const FArrayBox& exfab = Ex[pti];
	    const FArrayBox& eyfab = Ey[pti];
	    const FArrayBox& ezfab = Ez[pti];
	    const FArrayBox& bxfab = Bx[pti];
	    const FArrayBox& byfab = By[pti];
	    const FArrayBox& bzfab = Bz[pti];

	    Exp.assign(np,0.0);
	    Eyp.assign(np,0.0);
	    Ezp.assign(np,0.0);
	    Bxp.assign(np,WarpX::B_external[0]);
	    Byp.assign(np,WarpX::B_external[1]);
	    Bzp.assign(np,WarpX::B_external[2]);

	    giv.resize(np);

	    //
	    // copy data from particle container to temp arrays
	    //
            pti.GetPosition(xp, yp, zp);

            const std::array<Real,3>& xyzmin_grid = WarpX::LowerCorner(box, lev);
            const int* ixyzmin_grid = box.loVect();

            const int ll4symtry          = false;
            const int l_lower_order_in_v = true;
            long lvect_fieldgathe = 64;
            warpx_geteb_energy_conserving(
                &np, xp.data(), yp.data(), zp.data(),
                Exp.data(),Eyp.data(),Ezp.data(),
                Bxp.data(),Byp.data(),Bzp.data(),
                ixyzmin_grid,
                &xyzmin_grid[0], &xyzmin_grid[1], &xyzmin_grid[2],
                &dx[0], &dx[1], &dx[2],
                &WarpX::nox, &WarpX::noy, &WarpX::noz,
                BL_TO_FORTRAN_ANYD(exfab),
                BL_TO_FORTRAN_ANYD(eyfab),
                BL_TO_FORTRAN_ANYD(ezfab),
                BL_TO_FORTRAN_ANYD(bxfab),
                BL_TO_FORTRAN_ANYD(byfab),
                BL_TO_FORTRAN_ANYD(bzfab),
                &ll4symtry, &l_lower_order_in_v,
                &lvect_fieldgathe, &WarpX::field_gathering_algo);

            warpx_particle_pusher_momenta(&np, xp.data(), yp.data(), zp.data(),
                                          uxp.data(), uyp.data(), uzp.data(), giv.data(),
                                          Exp.dataPtr(), Eyp.dataPtr(), Ezp.dataPtr(),
                                          Bxp.dataPtr(), Byp.dataPtr(), Bzp.dataPtr(),
                                          &this->charge, &this->mass, &dt,
                                          &WarpX::particle_pusher_algo);
        }
    }
}

void PhysicalParticleContainer::GetParticleSlice(const int direction, const Real z_old,
                                                 const Real z_new, const Real t_boost,
                                                 const Real t_lab, const Real dt,
                                                 DiagnosticParticles& diagnostic_particles)
{
    BL_PROFILE("PhysicalParticleContainer::GetParticleSlice");
    
#ifdef WARPX_STORE_OLD_PARTICLE_ATTRIBS
    // Assume that the boost in the positive z direction.
#if (AMREX_SPACEDIM == 2)
    AMREX_ALWAYS_ASSERT(direction == 1);
#else
    AMREX_ALWAYS_ASSERT(direction == 2);
#endif
    
    // Note the the slice should always move in the negative boost direction.
    AMREX_ALWAYS_ASSERT(z_new < z_old);
    
    const int nlevs = std::max(0, finestLevel()+1);

    // we figure out a box for coarse-grained rejection. If the RealBox corresponding to a
    // given tile doesn't intersect with this, there is no need to check any particles.
    const Real* base_dx = Geom(0).CellSize();
    const Real z_min = z_new - base_dx[direction];
    const Real z_max = z_old + base_dx[direction];

    RealBox slice_box = Geom(0).ProbDomain();
    slice_box.setLo(direction, z_min);
    slice_box.setHi(direction, z_max);

    for (int lev = 0; lev < nlevs; ++lev) {

        const Real* dx  = Geom(lev).CellSize();
        const Real* plo = Geom(lev).ProbLo(); 

        // first we touch each map entry in serial
        for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
        {
            auto index = std::make_pair(pti.index(), pti.LocalTileIndex());
            diagnostic_particles[index];
        }
        
#ifdef _OPENMP
#pragma omp parallel
#endif
        {
            Vector<Real> xp_new, yp_new, zp_new;
            
            for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti)
            {
                const Box& box = pti.validbox();

                auto index = std::make_pair(pti.index(), pti.LocalTileIndex());
                
                const RealBox tile_real_box(box, dx, plo);

                if ( !slice_box.intersects(tile_real_box) ) continue;

                pti.GetPosition(xp_new, yp_new, zp_new);

                auto& attribs = pti.GetAttribs();

                auto& wp = attribs[PIdx::w ];

                auto& uxp_new = attribs[PIdx::ux   ];
                auto& uyp_new = attribs[PIdx::uy   ];
                auto& uzp_new = attribs[PIdx::uz   ];

                auto&  xp_old = attribs[PIdx::xold ];
                auto&  yp_old = attribs[PIdx::yold ];
                auto&  zp_old = attribs[PIdx::zold ];
                auto& uxp_old = attribs[PIdx::uxold];
                auto& uyp_old = attribs[PIdx::uyold];
                auto& uzp_old = attribs[PIdx::uzold];
        
                const long np = pti.numParticles();

                Real uzfrm = -WarpX::gamma_boost*WarpX::beta_boost*PhysConst::c;
                Real inv_c2 = 1.0/PhysConst::c/PhysConst::c;
                
                for (long i = 0; i < np; ++i) {

                    // if the particle did not cross the plane of z_boost in the last
                    // timestep, skip it.
                    if ( not (((zp_new[i] >= z_new) && (zp_old[i] <= z_old)) ||
                              ((zp_new[i] <= z_new) && (zp_old[i] >= z_old))) ) continue;

                    // Lorentz transform particles to lab frame
                    Real gamma_new_p = std::sqrt(1.0 + inv_c2*(uxp_new[i]*uxp_new[i] + uyp_new[i]*uyp_new[i] + uzp_new[i]*uzp_new[i]));
                    Real t_new_p = WarpX::gamma_boost*t_boost - uzfrm*zp_new[i]*inv_c2;
                    Real z_new_p = WarpX::gamma_boost*(zp_new[i] + WarpX::beta_boost*PhysConst::c*t_boost);
                    Real uz_new_p = WarpX::gamma_boost*uzp_new[i] - gamma_new_p*uzfrm;

                    Real gamma_old_p = std::sqrt(1.0 + inv_c2*(uxp_old[i]*uxp_old[i] + uyp_old[i]*uyp_old[i] + uzp_old[i]*uzp_old[i]));
                    Real t_old_p = WarpX::gamma_boost*(t_boost - dt) - uzfrm*zp_old[i]*inv_c2;
                    Real z_old_p = WarpX::gamma_boost*(zp_old[i] + WarpX::beta_boost*PhysConst::c*(t_boost-dt));
                    Real uz_old_p = WarpX::gamma_boost*uzp_old[i] - gamma_old_p*uzfrm;

                    // interpolate in time to t_lab
                    Real weight_old = (t_new_p - t_lab) / (t_new_p - t_old_p);
                    Real weight_new = (t_lab - t_old_p) / (t_new_p - t_old_p);

                    Real xp = xp_old[i]*weight_old + xp_new[i]*weight_new;
                    Real yp = yp_old[i]*weight_old + yp_new[i]*weight_new;
                    Real zp = z_old_p  *weight_old + z_new_p  *weight_new;

                    Real uxp = uxp_old[i]*weight_old + uxp_new[i]*weight_new;
                    Real uyp = uyp_old[i]*weight_old + uyp_new[i]*weight_new;
                    Real uzp = uz_old_p  *weight_old + uz_new_p  *weight_new;

                    diagnostic_particles[index].GetRealData(DiagIdx::w).push_back(wp[i]);
                    
                    diagnostic_particles[index].GetRealData(DiagIdx::x).push_back(xp);
                    diagnostic_particles[index].GetRealData(DiagIdx::y).push_back(yp);
                    diagnostic_particles[index].GetRealData(DiagIdx::z).push_back(zp);

                    diagnostic_particles[index].GetRealData(DiagIdx::ux).push_back(uxp);
                    diagnostic_particles[index].GetRealData(DiagIdx::uy).push_back(uyp);
                    diagnostic_particles[index].GetRealData(DiagIdx::uz).push_back(uzp);
                }
            }
        }
    }
#else
    AMREX_ALWAYS_ASSERT_WITH_MESSAGE( false ,
"ERROR: WarpX must be compiled with STORE_OLD_PARTICLE_ATTRIBS=TRUE to use the back-transformed diagnostics");
#endif
}