1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#include "Average.H"
using namespace amrex;
void
Average::CoarsenAndInterpolateLoop ( MultiFab& mf_dst,
const MultiFab& mf_src,
const int dcomp,
const int scomp,
const int ncomp,
const int ngrow,
const IntVect crse_ratio )
{
// Staggering of source fine MultiFab and destination coarse MultiFab
const IntVect stag_src = mf_src.boxArray().ixType().toIntVect();
const IntVect stag_dst = mf_dst.boxArray().ixType().toIntVect();
if ( crse_ratio > IntVect(1) ) AMREX_ALWAYS_ASSERT_WITH_MESSAGE( ngrow == 0,
"option of filling guard cells of destination MultiFab with coarsening not supported for this interpolation" );
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( mf_src.nGrowVect() >= stag_dst-stag_src+IntVect(ngrow),
"source fine MultiFab does not have enough guard cells for this interpolation" );
// Auxiliary integer arrays (always 3D)
Gpu::ManagedVector<int> sf_gpuarr, sc_gpuarr, cr_gpuarr, np_gpuarr;
sf_gpuarr.resize( 3 ); // staggering of source fine MultiFab
sc_gpuarr.resize( 3 ); // staggering of destination coarse MultiFab
cr_gpuarr.resize( 3 ); // coarsening ratio
np_gpuarr.resize( 3 ); // number of points to loop over for interpolation
sf_gpuarr[0] = stag_src[0];
sf_gpuarr[1] = stag_src[1];
#if (AMREX_SPACEDIM == 2)
sf_gpuarr[2] = 0;
#elif (AMREX_SPACEDIM == 3)
sf_gpuarr[2] = stag_src[2];
#endif
sc_gpuarr[0] = stag_dst[0];
sc_gpuarr[1] = stag_dst[1];
#if (AMREX_SPACEDIM == 2)
sc_gpuarr[2] = 0;
#elif (AMREX_SPACEDIM == 3)
sc_gpuarr[2] = stag_dst[2];
#endif
cr_gpuarr[0] = crse_ratio[0];
cr_gpuarr[1] = crse_ratio[1];
#if (AMREX_SPACEDIM == 2)
cr_gpuarr[2] = 1;
#elif (AMREX_SPACEDIM == 3)
cr_gpuarr[2] = crse_ratio[2];
#endif
int const* const AMREX_RESTRICT sf = sf_gpuarr.data();
int const* const AMREX_RESTRICT sc = sc_gpuarr.data();
int const* const AMREX_RESTRICT cr = cr_gpuarr.data();
int * const AMREX_RESTRICT np = np_gpuarr.data();
// Compute number of points to loop over (either 1 or 2) in each direction
for ( int l = 0; l < 3; ++l ) {
if ( cr[l] == 1 ) np[l] = 1+abs(sf[l]-sc[l]); // no coarsening
else np[l] = 2-sf[l];
}
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
// Loop over boxes (or tiles if not on GPU)
for (MFIter mfi( mf_dst, TilingIfNotGPU() ); mfi.isValid(); ++mfi)
{
// Tiles defined at the coarse level
const Box& bx = mfi.growntilebox( ngrow );
Array4<Real> const& arr_dst = mf_dst.array( mfi );
Array4<Real const> const& arr_src = mf_src.const_array( mfi );
ParallelFor( bx, ncomp,
[=] AMREX_GPU_DEVICE( int i, int j, int k, int n )
{
arr_dst(i,j,k,n+dcomp) = Average::CoarsenAndInterpolateKernel(
arr_src, sf, sc, cr, np, i, j, k, n+scomp );
} );
}
}
void
Average::CoarsenAndInterpolate ( MultiFab& mf_dst,
const MultiFab& mf_src,
const int dcomp,
const int scomp,
const int ncomp,
const int ngrow,
const IntVect crse_ratio )
{
BL_PROFILE( "Average::CoarsenAndInterpolate" );
// Convert BoxArray of source MultiFab to staggering of destination MultiFab and coarsen it (if possible)
BoxArray ba_tmp = amrex::convert( mf_src.boxArray(), mf_dst.ixType().toIntVect() );
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( ba_tmp.coarsenable( crse_ratio ),
"source MultiFab converted to staggering of destination MultiFab is not coarsenable" );
ba_tmp.coarsen( crse_ratio );
if ( ba_tmp == mf_dst.boxArray() and mf_src.DistributionMap() == mf_dst.DistributionMap() )
Average::CoarsenAndInterpolateLoop( mf_dst, mf_src, dcomp, scomp, ncomp, ngrow, crse_ratio );
else
{
// Cannot coarsen into MultiFab with different BoxArray or DistributionMapping:
// 1) create temporary MultiFab on coarsened version of source BoxArray with same DistributionMapping
MultiFab mf_tmp( ba_tmp, mf_src.DistributionMap(), ncomp, 0, MFInfo(), FArrayBoxFactory() );
// 2) interpolate from mf_src to mf_tmp (start writing into component 0)
Average::CoarsenAndInterpolateLoop( mf_tmp, mf_src, 0, scomp, ncomp, ngrow, crse_ratio );
// 3) copy from mf_tmp to mf_dst (with different BoxArray or DistributionMapping)
mf_dst.copy( mf_tmp, 0, dcomp, ncomp );
}
}
|