1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
#include "Interpolate.H"
#include "Interpolate_K.H"
namespace Interpolate
{
using namespace amrex;
std::unique_ptr<MultiFab>
getInterpolatedScalar(
const MultiFab& F_cp, const MultiFab& F_fp,
const DistributionMapping& dm, const int r_ratio,
const Real* /*dx*/, const int ngrow )
{
// Prepare the structure that will contain the returned fields
std::unique_ptr<MultiFab> interpolated_F;
interpolated_F.reset( new MultiFab(F_fp.boxArray(), dm, 1, ngrow) );
interpolated_F->setVal(0.);
// Loop through the boxes and interpolate the values from the _cp data
#ifdef _OPENMP
#pragma omp parallel
#endif
{
FArrayBox ffab; // Temporary array ; contains interpolated fields
for (MFIter mfi(*interpolated_F); mfi.isValid(); ++mfi)
{
Box finebx = mfi.fabbox();
finebx.coarsen(r_ratio).refine(r_ratio); // so that finebx is coarsenable
const FArrayBox& cfab = (F_cp)[mfi];
ffab.resize(finebx);
// - Fully nodal
if ( F_fp.is_nodal() ){
IntVect refinement_vector{AMREX_D_DECL(r_ratio, r_ratio, r_ratio)};
node_bilinear_interp.interp(cfab, 0, ffab, 0, 1,
finebx, refinement_vector, {}, {}, {}, 0, 0, RunOn::Cpu);
} else {
amrex::Abort("Unknown field staggering.");
}
// Add temporary array to the returned structure
const Box& bx = (*interpolated_F)[mfi].box();
(*interpolated_F)[mfi].plus<RunOn::Host>(ffab, bx, bx, 0, 0, 1);
}
}
return interpolated_F;
}
std::array<std::unique_ptr<MultiFab>, 3>
getInterpolatedVector(
const MultiFab* Fx_cp,
const MultiFab* Fy_cp,
const MultiFab* Fz_cp,
const MultiFab* Fx_fp,
const MultiFab* Fy_fp,
const MultiFab* Fz_fp,
const DistributionMapping& dm, const int r_ratio,
const Real* /*dx*/, const int ngrow )
{
// Prepare the structure that will contain the returned fields
std::array<std::unique_ptr<MultiFab>, 3> interpolated_F;
interpolated_F[0].reset( new MultiFab(Fx_fp->boxArray(), dm, 1, ngrow) );
interpolated_F[1].reset( new MultiFab(Fy_fp->boxArray(), dm, 1, ngrow) );
interpolated_F[2].reset( new MultiFab(Fz_fp->boxArray(), dm, 1, ngrow) );
IntVect fx_type = interpolated_F[0]->ixType().toIntVect();
IntVect fy_type = interpolated_F[1]->ixType().toIntVect();
IntVect fz_type = interpolated_F[2]->ixType().toIntVect();
#ifdef _OPENMP
#pragma omp parallel
#endif
for (MFIter mfi(*interpolated_F[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
{
Box const& boxx = mfi.growntilebox(fx_type);
Box const& boxy = mfi.growntilebox(fy_type);
Box const& boxz = mfi.growntilebox(fz_type);
Array4<Real > const& fx = interpolated_F[0]->array(mfi);
Array4<Real > const& fy = interpolated_F[1]->array(mfi);
Array4<Real > const& fz = interpolated_F[2]->array(mfi);
Array4<Real const> const& cx = Fx_cp->const_array(mfi);
Array4<Real const> const& cy = Fy_cp->const_array(mfi);
Array4<Real const> const& cz = Fz_cp->const_array(mfi);
amrex::ParallelFor(boxx, boxy, boxz,
[=] AMREX_GPU_DEVICE (int j, int k, int l) noexcept
{
interp(j,k,l,fx,cx,r_ratio,fx_type);
},
[=] AMREX_GPU_DEVICE (int j, int k, int l) noexcept
{
interp(j,k,l,fy,cy,r_ratio,fy_type);
},
[=] AMREX_GPU_DEVICE (int j, int k, int l) noexcept
{
interp(j,k,l,fz,cz,r_ratio,fz_type);
});
}
return interpolated_F;
}
}
|