1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* Copyright 2019 David Grote, Luca Fedeli, Remi Lehe
* Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifndef UTILS_WARPXALGORITHMSELECTION_H_
#define UTILS_WARPXALGORITHMSELECTION_H_
#include <AMReX_ParmParse.H>
#include <string>
/**
* \brief struct to determine the computational medium, i.e., vacuum or material/macroscopic
default is vacuum.
*/
struct MediumForEM {
enum {
Vacuum = 0,
Macroscopic = 1
};
};
/**
* \brief struct to select algorithm for macroscopic Maxwell solver
LaxWendroff (semi-implicit) represents sigma*E = sigma*0.5*(E^(n) + E^(n+1))
Backward Euler (fully-implicit) represents sigma*E = sigma*E^(n+1)
default is Backward Euler as it is more robust.
*/
struct MacroscopicSolverAlgo {
enum {
BackwardEuler = 0,
LaxWendroff = 1
};
};
struct MaxwellSolverAlgo {
enum {
Yee = 0,
CKC = 1,
PSATD = 2
};
};
struct ElectrostaticSolverAlgo {
enum {
None = 0,
Relativistic = 1,
LabFrame = 2
};
};
struct ParticlePusherAlgo {
enum {
Boris = 0,
Vay = 1,
HigueraCary = 2
};
};
struct CurrentDepositionAlgo {
enum {
Esirkepov = 0,
Direct = 1,
Vay = 2
};
};
struct ChargeDepositionAlgo {
// Only the Standard algorithm is implemented
enum {
Standard = 0
};
};
struct GatheringAlgo {
enum {
EnergyConserving = 0,
MomentumConserving
};
};
/** Strategy to compute weights for use in load balance.
*/
struct LoadBalanceCostsUpdateAlgo {
enum {
Timers = 0, //!< load balance according to in-code timer-based weights (i.e., with `costs`)
Heuristic = 1, /**< load balance according to weights computed from number of cells
and number of particles per box (i.e., with `costs_heuristic`)*/
GpuClock = 2
};
};
/** Field boundary conditions at the domain boundary
*/
struct FieldBoundaryType {
enum {
PML = 0,
Periodic = 1,
PEC = 2, //!< perfect electric conductor (PEC) with E_tangential=0
PMC = 3 //!< perfect magnetic conductor (PMC) with B_tangential=0
};
};
/** Particle boundary conditions at the domain boundary
*/
struct ParticleBoundaryType {
enum {
Absorbing = 0, //!< particles crossing domain boundary are removed
Open = 1, //!< particles cross domain boundary leave with damped j
Reflecting = 2, //!< particles are reflected
Periodic = 3
};
};
int
GetAlgorithmInteger( amrex::ParmParse& pp, const char* pp_search_key );
/** Select BC Type for fields, if field=true
* else select BCType for particles.
*/
int
GetBCTypeInteger( std::string BCType, bool field );
#endif // UTILS_WARPXALGORITHMSELECTION_H_
|