1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
/* Copyright 2019 David Grote, Luca Fedeli, Remi Lehe
* Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifndef UTILS_WARPXALGORITHMSELECTION_H_
#define UTILS_WARPXALGORITHMSELECTION_H_
#include <AMReX_BaseFwd.H>
#include <string>
/**
* \brief struct to determine the computational medium, i.e., vacuum or material/macroscopic
default is vacuum.
*/
struct MediumForEM {
enum {
Vacuum = 0,
Macroscopic = 1
};
};
/**
* \brief struct to select algorithm for macroscopic Maxwell solver
LaxWendroff (semi-implicit) represents sigma*E = sigma*0.5*(E^(n) + E^(n+1))
Backward Euler (fully-implicit) represents sigma*E = sigma*E^(n+1)
default is Backward Euler as it is more robust.
*/
struct MacroscopicSolverAlgo {
enum {
BackwardEuler = 0,
LaxWendroff = 1
};
};
struct ElectromagneticSolverAlgo {
enum {
None = 0,
Yee = 1,
CKC = 2,
PSATD = 3,
ECT = 4
};
};
struct ElectrostaticSolverAlgo {
enum {
None = 0,
Relativistic = 1,
LabFrameElectroMagnetostatic = 2,
LabFrame = 3 // Non relativistic
};
};
struct ParticlePusherAlgo {
enum {
Boris = 0,
Vay = 1,
HigueraCary = 2
};
};
struct CurrentDepositionAlgo {
enum {
Esirkepov = 0,
Direct = 1,
Vay = 2
};
};
struct ChargeDepositionAlgo {
// Only the Standard algorithm is implemented
enum {
Standard = 0
};
};
struct GatheringAlgo {
enum {
EnergyConserving = 0,
MomentumConserving
};
};
struct PSATDSolutionType {
enum {
FirstOrder = 0,
SecondOrder = 1
};
};
struct JInTime {
enum {
Constant = 0,
Linear = 1
};
};
struct RhoInTime {
enum {
Constant = 0,
Linear = 1
};
};
/** Strategy to compute weights for use in load balance.
*/
struct LoadBalanceCostsUpdateAlgo {
enum {
Timers = 0, //!< load balance according to in-code timer-based weights (i.e., with `costs`)
Heuristic = 1, /**< load balance according to weights computed from number of cells
and number of particles per box (i.e., with `costs_heuristic`)*/
GpuClock = 2
};
};
/** Field boundary conditions at the domain boundary
*/
struct FieldBoundaryType {
enum {
PML = 0,
Periodic = 1,
PEC = 2, //!< perfect electric conductor (PEC) with E_tangential=0
PMC = 3, //!< perfect magnetic conductor (PMC) with B_tangential=0
Damped = 4, // Fields in the guard cells are damped for PSATD
//in the moving window direction
Absorbing_SilverMueller = 5, // Silver-Mueller boundary condition
Neumann = 6, // For electrostatic, the normal E is set to zero
None = 7 // The fields values at the boundary are not updated. This is
// useful for RZ simulations, at r=0.
};
};
/** Particle boundary conditions at the domain boundary
*/
enum struct ParticleBoundaryType {
Absorbing = 0, //!< particles crossing domain boundary are removed
Open = 1, //!< particles cross domain boundary leave with damped j
Reflecting = 2, //!< particles are reflected
Periodic = 3
};
/** MPI reductions
*/
struct ReductionType {
enum {
Maximum = 0,
Minimum = 1,
Sum = 2
};
};
int
GetAlgorithmInteger( amrex::ParmParse& pp, const char* pp_search_key );
/** Select BC Type for fields, if field=true
* else select BCType for particles.
*/
int
GetFieldBCTypeInteger( std::string BCType );
/** Select BC Type for particles.
*/
ParticleBoundaryType
GetParticleBCTypeInteger( std::string BCType );
#endif // UTILS_WARPXALGORITHMSELECTION_H_
|