1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
#include "GuardCellManager.H"
#include <WarpX.H>
#include <WarpXUtil.H>
#include <WarpXConst.H>
using namespace amrex;
void
WarpX::UpdatePlasmaInjectionPosition (Real a_dt)
{
int dir = moving_window_dir;
// Continuously inject plasma in new cells (by default only on level 0)
if (WarpX::warpx_do_continuous_injection and (WarpX::gamma_boost > 1)){
// In boosted-frame simulations, the plasma has moved since the last
// call to this function, and injection position needs to be updated
current_injection_position -= WarpX::beta_boost *
#if ( AMREX_SPACEDIM == 3 )
WarpX::boost_direction[dir] * PhysConst::c * a_dt;
#elif ( AMREX_SPACEDIM == 2 )
// In 2D, dir=0 corresponds to x and dir=1 corresponds to z
// This needs to be converted in order to index `boost_direction`
// which has 3 components, for both 2D and 3D simulations.
WarpX::boost_direction[2*dir] * PhysConst::c * a_dt;
#endif
}
}
int
WarpX::MoveWindow (bool move_j)
{
if (do_moving_window == 0) return 0;
IntVect ng_extra = guard_cells.ng_Extra;
IntVect ng_zero = IntVect::TheZeroVector();
// Update the continuous position of the moving window,
// and of the plasma injection
moving_window_x += moving_window_v * dt[0];
int dir = moving_window_dir;
// Update warpx.current_injection_position
// PhysicalParticleContainer uses this injection position
UpdatePlasmaInjectionPosition( dt[0] );
if (WarpX::warpx_do_continuous_injection){
// Update injection position for WarpXParticleContainer in mypc.
// Nothing to do for PhysicalParticleContainers
// For LaserParticleContainer, need to update the antenna position.
mypc->UpdateContinuousInjectionPosition( dt[0] );
}
// compute the number of cells to shift on the base level
Real new_lo[AMREX_SPACEDIM];
Real new_hi[AMREX_SPACEDIM];
const Real* current_lo = geom[0].ProbLo();
const Real* current_hi = geom[0].ProbHi();
const Real* cdx = geom[0].CellSize();
int num_shift_base = static_cast<int>((moving_window_x - current_lo[dir]) / cdx[dir]);
if (num_shift_base == 0) return 0;
// update the problem domain. Note the we only do this on the base level because
// amrex::Geometry objects share the same, static RealBox.
for (int i=0; i<AMREX_SPACEDIM; i++) {
new_lo[i] = current_lo[i];
new_hi[i] = current_hi[i];
}
new_lo[dir] = current_lo[dir] + num_shift_base * cdx[dir];
new_hi[dir] = current_hi[dir] + num_shift_base * cdx[dir];
ResetProbDomain(RealBox(new_lo, new_hi));
// Moving slice coordinates - lo and hi - with moving window //
// slice box is modified only if slice diagnostics is initialized in input //
if ( slice_plot_int > 0 )
{
Real new_slice_lo[AMREX_SPACEDIM];
Real new_slice_hi[AMREX_SPACEDIM];
const Real* current_slice_lo = slice_realbox.lo();
const Real* current_slice_hi = slice_realbox.hi();
for ( int i = 0; i < AMREX_SPACEDIM; i++) {
new_slice_lo[i] = current_slice_lo[i];
new_slice_hi[i] = current_slice_hi[i];
}
int num_shift_base_slice = static_cast<int> ((moving_window_x -
current_slice_lo[dir]) / cdx[dir]);
new_slice_lo[dir] = current_slice_lo[dir] + num_shift_base_slice*cdx[dir];
new_slice_hi[dir] = current_slice_hi[dir] + num_shift_base_slice*cdx[dir];
slice_realbox.setLo(new_slice_lo);
slice_realbox.setHi(new_slice_hi);
}
int num_shift = num_shift_base;
int num_shift_crse = num_shift;
// Shift the mesh fields
for (int lev = 0; lev <= finest_level; ++lev) {
if (lev > 0) {
num_shift_crse = num_shift;
num_shift *= refRatio(lev-1)[dir];
}
// Shift each component of vector fields (E, B, j)
for (int dim = 0; dim < 3; ++dim) {
// Fine grid
ParserWrapper *Bfield_parser;
ParserWrapper *Efield_parser;
bool use_Bparser = false;
bool use_Eparser = false;
if (B_ext_grid_s == "parse_b_ext_grid_function") {
use_Bparser = true;
if (dim == 0) Bfield_parser = Bxfield_parser.get();
if (dim == 1) Bfield_parser = Byfield_parser.get();
if (dim == 2) Bfield_parser = Bzfield_parser.get();
}
if (E_ext_grid_s == "parse_e_ext_grid_function") {
use_Eparser = true;
if (dim == 0) Efield_parser = Exfield_parser.get();
if (dim == 1) Efield_parser = Eyfield_parser.get();
if (dim == 2) Efield_parser = Ezfield_parser.get();
}
shiftMF(*Bfield_fp[lev][dim], geom[lev], num_shift, dir, ng_extra, B_external_grid[dim], use_Bparser, Bfield_parser);
shiftMF(*Efield_fp[lev][dim], geom[lev], num_shift, dir, ng_extra, E_external_grid[dim], use_Eparser, Efield_parser);
if (move_j) {
shiftMF(*current_fp[lev][dim], geom[lev], num_shift, dir, ng_zero);
}
if (do_pml && pml[lev]->ok()) {
const std::array<MultiFab*, 3>& pml_B = pml[lev]->GetB_fp();
const std::array<MultiFab*, 3>& pml_E = pml[lev]->GetE_fp();
shiftMF(*pml_B[dim], geom[lev], num_shift, dir, ng_extra);
shiftMF(*pml_E[dim], geom[lev], num_shift, dir, ng_extra);
}
if (lev > 0) {
// coarse grid
shiftMF(*Bfield_cp[lev][dim], geom[lev-1], num_shift_crse, dir, ng_zero, B_external_grid[dim], use_Bparser, Bfield_parser);
shiftMF(*Efield_cp[lev][dim], geom[lev-1], num_shift_crse, dir, ng_zero, E_external_grid[dim], use_Eparser, Efield_parser);
shiftMF(*Bfield_aux[lev][dim], geom[lev], num_shift, dir, ng_zero);
shiftMF(*Efield_aux[lev][dim], geom[lev], num_shift, dir, ng_zero);
if (move_j) {
shiftMF(*current_cp[lev][dim], geom[lev-1], num_shift_crse, dir, ng_zero);
}
if (do_pml && pml[lev]->ok()) {
const std::array<MultiFab*, 3>& pml_B = pml[lev]->GetB_cp();
const std::array<MultiFab*, 3>& pml_E = pml[lev]->GetE_cp();
shiftMF(*pml_B[dim], geom[lev-1], num_shift_crse, dir, ng_extra);
shiftMF(*pml_E[dim], geom[lev-1], num_shift_crse, dir, ng_extra);
}
}
}
// Shift scalar component F for dive cleaning
if (do_dive_cleaning) {
// Fine grid
shiftMF(*F_fp[lev], geom[lev], num_shift, dir, ng_zero);
if (do_pml && pml[lev]->ok()) {
MultiFab* pml_F = pml[lev]->GetF_fp();
shiftMF(*pml_F, geom[lev], num_shift, dir, ng_extra);
}
if (lev > 0) {
// Coarse grid
shiftMF(*F_cp[lev], geom[lev-1], num_shift_crse, dir, ng_zero);
if (do_pml && pml[lev]->ok()) {
MultiFab* pml_F = pml[lev]->GetF_cp();
shiftMF(*pml_F, geom[lev-1], num_shift_crse, dir, ng_zero);
}
shiftMF(*rho_cp[lev], geom[lev-1], num_shift_crse, dir, ng_zero);
}
}
// Shift scalar component rho
if (move_j) {
if (rho_fp[lev]){
// Fine grid
shiftMF(*rho_fp[lev], geom[lev], num_shift, dir, ng_zero);
if (lev > 0){
// Coarse grid
shiftMF(*rho_cp[lev], geom[lev-1], num_shift_crse, dir, ng_zero);
}
}
}
}
// Continuously inject plasma in new cells (by default only on level 0)
if (WarpX::warpx_do_continuous_injection) {
const int lev = 0;
// particleBox encloses the cells where we generate particles
// (only injects particles in an integer number of cells,
// for correct particle spacing)
RealBox particleBox = geom[lev].ProbDomain();
Real new_injection_position;
if (moving_window_v >= 0){
// Forward-moving window
Real dx = geom[lev].CellSize(dir);
new_injection_position = current_injection_position +
std::floor( (geom[lev].ProbHi(dir) - current_injection_position)/dx ) * dx;
} else {
// Backward-moving window
Real dx = geom[lev].CellSize(dir);
new_injection_position = current_injection_position -
std::floor( (current_injection_position - geom[lev].ProbLo(dir))/dx) * dx;
}
// Modify the corresponding bounds of the particleBox
if (moving_window_v >= 0) {
particleBox.setLo( dir, current_injection_position );
particleBox.setHi( dir, new_injection_position );
} else {
particleBox.setLo( dir, new_injection_position );
particleBox.setHi( dir, current_injection_position );
}
if (particleBox.ok() and (current_injection_position != new_injection_position)){
// Performs continuous injection of all WarpXParticleContainer
// in mypc.
mypc->ContinuousInjection(particleBox);
current_injection_position = new_injection_position;
}
}
return num_shift_base;
}
void
WarpX::shiftMF (MultiFab& mf, const Geometry& geom, int num_shift, int dir,
IntVect ng_extra, amrex::Real external_field, bool useparser,
ParserWrapper *field_parser)
{
BL_PROFILE("WarpX::shiftMF()");
const BoxArray& ba = mf.boxArray();
const DistributionMapping& dm = mf.DistributionMap();
const int nc = mf.nComp();
const IntVect& ng = mf.nGrowVect();
AMREX_ALWAYS_ASSERT(ng.min() >= num_shift);
MultiFab tmpmf(ba, dm, nc, ng);
MultiFab::Copy(tmpmf, mf, 0, 0, nc, ng);
IntVect ng_mw = IntVect::TheUnitVector();
// Enough guard cells in the MW direction
ng_mw[dir] = num_shift;
// Add the extra cell (if momentum-conserving gather with staggered field solve)
ng_mw += ng_extra;
// Make sure we don't exceed number of guard cells allocated
ng_mw = ng_mw.min(ng);
// Fill guard cells.
tmpmf.FillBoundary(ng_mw, geom.periodicity());
// Make a box that covers the region that the window moved into
const IndexType& typ = ba.ixType();
const Box& domainBox = geom.Domain();
Box adjBox;
if (num_shift > 0) {
adjBox = adjCellHi(domainBox, dir, ng[dir]);
} else {
adjBox = adjCellLo(domainBox, dir, ng[dir]);
}
adjBox = amrex::convert(adjBox, typ);
for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
if (idim == dir and typ.nodeCentered(dir)) {
if (num_shift > 0) {
adjBox.growLo(idim, -1);
} else {
adjBox.growHi(idim, -1);
}
} else if (idim != dir) {
adjBox.growLo(idim, ng[idim]);
adjBox.growHi(idim, ng[idim]);
}
}
IntVect shiftiv(0);
shiftiv[dir] = num_shift;
Dim3 shift = shiftiv.dim3();
const RealBox& real_box = geom.ProbDomain();
const auto dx = geom.CellSizeArray();
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
for (MFIter mfi(tmpmf); mfi.isValid(); ++mfi )
{
auto const& dstfab = mf.array(mfi);
auto const& srcfab = tmpmf.array(mfi);
const Box& outbox = mfi.fabbox() & adjBox;
if (outbox.ok()) {
if (useparser == false) {
AMREX_PARALLEL_FOR_4D ( outbox, nc, i, j, k, n,
{
srcfab(i,j,k,n) = external_field;
});
} else if (useparser == true) {
// index type of the src mf
auto const& mf_IndexType = (tmpmf).ixType();
IntVect mf_type(AMREX_D_DECL(0,0,0));
for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
mf_type[idim] = mf_IndexType.nodeCentered(idim);
}
amrex::ParallelFor (outbox, nc,
[=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
{
// Compute x,y,z co-ordinates based on index type of mf
Real fac_x = (1.0 - mf_type[0]) * dx[0]*0.5;
Real x = i*dx[0] + real_box.lo(0) + fac_x;
#if (AMREX_SPACEDIM==2)
Real y = 0.0;
Real fac_z = (1.0 - mf_type[1]) * dx[1]*0.5;
Real z = j*dx[1] + real_box.lo(1) + fac_z;
#else
Real fac_y = (1.0 - mf_type[1]) * dx[1]*0.5;
Real y = j*dx[1] + real_box.lo(1) + fac_y;
Real fac_z = (1.0 - mf_type[2]) * dx[2]*0.5;
Real z = k*dx[2] + real_box.lo(2) + fac_z;
#endif
srcfab(i,j,k,n) = field_parser->getField(x,y,z);
}
, amrex::Gpu::numThreadsPerBlockParallelFor() * sizeof(double)*4
);
}
}
Box dstBox = mf[mfi].box();
if (num_shift > 0) {
dstBox.growHi(dir, -num_shift);
} else {
dstBox.growLo(dir, num_shift);
}
AMREX_PARALLEL_FOR_4D ( dstBox, nc, i, j, k, n,
{
dstfab(i,j,k,n) = srcfab(i+shift.x,j+shift.y,k+shift.z,n);
});
}
}
void
WarpX::ResetProbDomain (const RealBox& rb)
{
Geometry::ResetDefaultProbDomain(rb);
for (int lev = 0; lev <= max_level; ++lev) {
Geometry g = Geom(lev);
g.ProbDomain(rb);
SetGeometry(lev, g);
}
}
|