1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/* Copyright 2019-2020 Andrew Myers, Burlen Loring, Luca Fedeli
* Maxence Thevenet, Remi Lehe, Revathi Jambunathan
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#include "WarpXUtil.H"
#include "WarpXConst.H"
#include "WarpX.H"
#include <AMReX_ParmParse.H>
#include <cmath>
#include <fstream>
using namespace amrex;
void ReadBoostedFrameParameters(Real& gamma_boost, Real& beta_boost,
Vector<int>& boost_direction)
{
ParmParse pp("warpx");
pp.query("gamma_boost", gamma_boost);
if( gamma_boost > 1. ) {
beta_boost = std::sqrt(1.-1./pow(gamma_boost,2));
std::string s;
pp.get("boost_direction", s);
if (s == "x" || s == "X") {
boost_direction[0] = 1;
}
#if (AMREX_SPACEDIM == 3)
else if (s == "y" || s == "Y") {
boost_direction[1] = 1;
}
#endif
else if (s == "z" || s == "Z") {
boost_direction[2] = 1;
}
else {
const std::string msg = "Unknown boost_dir: "+s;
Abort(msg.c_str());
}
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( s == "z" || s == "Z" ,
"The boost must be in the z direction.");
}
}
void ConvertLabParamsToBoost()
{
Real gamma_boost = 1., beta_boost = 0.;
int max_level = 0;
Vector<int> boost_direction {0,0,0};
ReadBoostedFrameParameters(gamma_boost, beta_boost, boost_direction);
if (gamma_boost <= 1.) return;
Vector<Real> prob_lo(AMREX_SPACEDIM);
Vector<Real> prob_hi(AMREX_SPACEDIM);
Vector<Real> fine_tag_lo(AMREX_SPACEDIM);
Vector<Real> fine_tag_hi(AMREX_SPACEDIM);
Vector<Real> slice_lo(AMREX_SPACEDIM);
Vector<Real> slice_hi(AMREX_SPACEDIM);
ParmParse pp_geom("geometry");
ParmParse pp_wpx("warpx");
ParmParse pp_amr("amr");
ParmParse pp_slice("slice");
pp_geom.getarr("prob_lo",prob_lo,0,AMREX_SPACEDIM);
AMREX_ALWAYS_ASSERT(prob_lo.size() == AMREX_SPACEDIM);
pp_geom.getarr("prob_hi",prob_hi,0,AMREX_SPACEDIM);
AMREX_ALWAYS_ASSERT(prob_hi.size() == AMREX_SPACEDIM);
pp_slice.queryarr("dom_lo",slice_lo,0,AMREX_SPACEDIM);
AMREX_ALWAYS_ASSERT(slice_lo.size() == AMREX_SPACEDIM);
pp_slice.queryarr("dom_hi",slice_hi,0,AMREX_SPACEDIM);
AMREX_ALWAYS_ASSERT(slice_hi.size() == AMREX_SPACEDIM);
pp_amr.query("max_level", max_level);
if (max_level > 0){
pp_wpx.getarr("fine_tag_lo", fine_tag_lo);
pp_wpx.getarr("fine_tag_hi", fine_tag_hi);
}
#if (AMREX_SPACEDIM == 3)
Vector<int> dim_map {0, 1, 2};
#else
Vector<int> dim_map {0, 2};
#endif
for (int idim = 0; idim < AMREX_SPACEDIM; ++idim)
{
if (boost_direction[dim_map[idim]]) {
amrex::Real convert_factor;
// Assume that the window travels with speed +c
convert_factor = 1./( gamma_boost * ( 1 - beta_boost ) );
prob_lo[idim] *= convert_factor;
prob_hi[idim] *= convert_factor;
if (max_level > 0){
fine_tag_lo[idim] *= convert_factor;
fine_tag_hi[idim] *= convert_factor;
}
slice_lo[idim] *= convert_factor;
slice_hi[idim] *= convert_factor;
break;
}
}
pp_geom.addarr("prob_lo", prob_lo);
pp_geom.addarr("prob_hi", prob_hi);
if (max_level > 0){
pp_wpx.addarr("fine_tag_lo", fine_tag_lo);
pp_wpx.addarr("fine_tag_hi", fine_tag_hi);
}
pp_slice.addarr("dom_lo",slice_lo);
pp_slice.addarr("dom_hi",slice_hi);
}
/* \brief Function that sets the value of MultiFab MF to zero for z between
* zmin and zmax.
*/
void NullifyMF(amrex::MultiFab& mf, int lev, amrex::Real zmin, amrex::Real zmax){
WARPX_PROFILE("WarpX::NullifyMF()");
#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
for(amrex::MFIter mfi(mf, amrex::TilingIfNotGPU()); mfi.isValid(); ++mfi){
const amrex::Box& bx = mfi.tilebox();
// Get box lower and upper physical z bound, and dz
#if (AMREX_SPACEDIM == 3)
amrex::Array<amrex::Real,3> galilean_shift = { 0., 0., 0., };
#elif (AMREX_SPACEDIM == 2)
amrex::Array<amrex::Real,3> galilean_shift = { 0., std::numeric_limits<Real>::quiet_NaN(), 0., } ;
#endif
const amrex::Real zmin_box = WarpX::LowerCorner(bx, galilean_shift, lev)[2];
const amrex::Real zmax_box = WarpX::UpperCorner(bx, lev)[2];
amrex::Real dz = WarpX::CellSize(lev)[2];
// Get box lower index in the z direction
#if (AMREX_SPACEDIM==3)
const int lo_ind = bx.loVect()[2];
#else
const int lo_ind = bx.loVect()[1];
#endif
// Check if box intersect with [zmin, zmax]
if ( (zmax>zmin_box && zmin<=zmax_box) ){
Array4<Real> arr = mf[mfi].array();
// Set field to 0 between zmin and zmax
ParallelFor(bx,
[=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept{
#if (AMREX_SPACEDIM==3)
const Real z_gridpoint = zmin_box+(k-lo_ind)*dz;
#else
const Real z_gridpoint = zmin_box+(j-lo_ind)*dz;
#endif
if ( (z_gridpoint >= zmin) && (z_gridpoint < zmax) ) {
arr(i,j,k) = 0.;
}
}
);
}
}
}
namespace WarpXUtilIO{
bool WriteBinaryDataOnFile(std::string filename, const amrex::Vector<char>& data)
{
std::ofstream of{filename, std::ios::binary};
of.write(data.data(), data.size());
of.close();
return of.good();
}
}
void Store_parserString(amrex::ParmParse& pp, std::string query_string,
std::string& stored_string)
{
std::vector<std::string> f;
pp.getarr(query_string.c_str(), f);
stored_string.clear();
for (auto const& s : f) {
stored_string += s;
}
f.clear();
}
WarpXParser makeParser (std::string const& parse_function, std::vector<std::string> const& varnames)
{
WarpXParser parser(parse_function);
parser.registerVariables(varnames);
ParmParse pp("my_constants");
std::set<std::string> symbols = parser.symbols();
for (auto const& v : varnames) symbols.erase(v.c_str());
for (auto it = symbols.begin(); it != symbols.end(); ) {
Real v;
if (pp.query(it->c_str(), v)) {
parser.setConstant(*it, v);
it = symbols.erase(it);
} else {
++it;
}
}
for (auto const& s : symbols) {
amrex::Abort("makeParser::Unknown symbol "+s);
}
return parser;
}
/**
* \brief Ensures that the blocks are setup correctly for the RZ spectral solver
* When using the RZ spectral solver, the Hankel transform cannot be
* divided among multiple blocks. Each block must extend over the
* entire radial extent.
* The grid can be divided up along z, but the number of blocks
* must be >= the number of processors.
*/
void CheckGriddingForRZSpectral ()
{
#if (defined WARPX_DIM_RZ) && (defined WARPX_USE_PSATD)
int max_level;
Vector<int> n_cell(AMREX_SPACEDIM, -1);
ParmParse pp_amr("amr");
pp_amr.get("max_level",max_level);
pp_amr.getarr("n_cell",n_cell,0,AMREX_SPACEDIM);
Vector<int> blocking_factor_x(max_level+1);
Vector<int> max_grid_size_x(max_level+1);
// Set the radial block size to be equal to the radial grid size.
blocking_factor_x[0] = n_cell[0];
max_grid_size_x[0] = n_cell[0];
for (int lev=1 ; lev <= max_level ; lev++) {
// For this to be correct, this needs to read in any user specified refinement ratios.
// But since that is messy and unlikely to be needed anytime soon, the ratio is
// fixed to 2 which will be the most likely value.
blocking_factor_x[lev] = blocking_factor_x[lev-1]*2; // refRatio(lev-1);
max_grid_size_x[lev] = max_grid_size_x[lev-1]*2; // refRatio(lev-1);
}
// Note that any user input values for these parameters are discarded.
pp_amr.addarr("blocking_factor_x", blocking_factor_x);
pp_amr.addarr("max_grid_size_x", max_grid_size_x);
// Adjust the longitudinal block sizes, making sure that there are
// more blocks than processors.
// The factor of 8 is there to make some room for higher order
// shape factors and filtering.
int nprocs = ParallelDescriptor::NProcs();
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(n_cell[1] >= 8*nprocs,
"With RZ spectral, there must be at least eight z-cells per processor so that there can be at least one block per processor.");
// Get the longitudinal blocking factor in case it was set by the user.
// If not set, use the default value of 8.
Vector<int> bf;
pp_amr.queryarr("blocking_factor",bf);
pp_amr.queryarr("blocking_factor_y",bf);
bf.resize(std::max(static_cast<int>(bf.size()),1),8);
// Modify the default or any user input, making sure that the blocking factor
// is small enough so that there will be at least as many blocks as there are
// processors. Because of the ASSERT above, bf will never be less than 8.
while (n_cell[1] < nprocs*bf[0]) {
bf[0] /= 2;
}
pp_amr.addarr("blocking_factor_y", bf);
// Get the longitudinal max grid size in case it was set by the user.
// If not set, use the default value of 128.
Vector<int> mg;
pp_amr.queryarr("max_grid_size",mg);
pp_amr.queryarr("max_grid_size_y",mg);
mg.resize(std::max(static_cast<int>(mg.size()),1),128);
// Modify the default or any user input, making sure that the max grid size
// (of the coarsest level) is small enough so that there will be at least
// as many blocks as there are processors.
while (n_cell[1] < nprocs*mg[0]) {
mg[0] /= 2;
}
pp_amr.addarr("max_grid_size_y", mg);
#endif
}
namespace WarpXUtilMsg{
void AlwaysAssert(bool is_expression_true, const std::string& msg = "ERROR!")
{
if(is_expression_true) return;
amrex::Abort(msg);
}
}
namespace WarpXUtilStr
{
bool is_in(const std::vector<std::string>& vect,
const std::string& elem)
{
bool value = false;
if (std::find(vect.begin(), vect.end(), elem) != vect.end()){
value = true;
}
return value;
}
bool is_in(const std::vector<std::string>& vect,
const std::vector<std::string>& elems)
{
bool value = false;
for (auto elem : elems){
if (is_in(vect, elem)) value = true;
}
return value;
}
}
|