1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
|
/* Copyright 2016-2020 Andrew Myers, Ann Almgren, Aurore Blelly
* Axel Huebl, Burlen Loring, David Grote
* Glenn Richardson, Junmin Gu, Luca Fedeli
* Mathieu Lobet, Maxence Thevenet, Remi Lehe
* Revathi Jambunathan, Weiqun Zhang, Yinjian Zhao
*
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifndef WARPX_H_
#define WARPX_H_
#include "WarpXDtType.H"
#include <MultiParticleContainer.H>
#include <PML.H>
#include <BackTransformedDiagnostic.H>
#include <BilinearFilter.H>
#include <NCIGodfreyFilter.H>
#include "MultiReducedDiags.H"
#include <FiniteDifferenceSolver.H>
#ifdef WARPX_USE_PSATD
# include <SpectralSolver.H>
#endif
#ifdef WARPX_USE_PSATD_HYBRID
# include <PicsarHybridFFTData.H>
#endif
#include <AMReX_AmrCore.H>
#include <AMReX_BLProfiler.H>
#include <AMReX_Print.H>
#include <AMReX_RealVect.H>
#include <AMReX_iMultiFab.H>
#include <AMReX_VisMF.H>
#include <AMReX_LayoutData.H>
#include <AMReX_Interpolater.H>
#include <AMReX_FillPatchUtil.H>
#include <WarpXParserWrapper.H>
#include "GuardCellManager.H"
#ifdef _OPENMP
# include <omp.h>
#endif
#ifdef WARPX_USE_OPENPMD
# include <WarpXOpenPMD.H>
#endif
#include <iostream>
#include <memory>
#include <array>
#if defined(BL_USE_SENSEI_INSITU)
namespace amrex {
class AmrMeshInSituBridge;
}
#endif
enum struct PatchType : int
{
fine,
coarse
};
class WarpX
: public amrex::AmrCore
{
public:
friend class PML;
static WarpX& GetInstance ();
static void ResetInstance ();
WarpX ();
~WarpX ();
static std::string Version (); //! Version of WarpX executable
static std::string PicsarVersion (); //! Version of PICSAR dependency
int Verbose () const { return verbose; }
void InitData ();
void Evolve (int numsteps = -1);
MultiParticleContainer& GetPartContainer () { return *mypc; }
static void shiftMF (amrex::MultiFab& mf, const amrex::Geometry& geom,
int num_shift, int dir, amrex::IntVect ng_extra,
amrex::Real external_field=0.0, bool useparser = false,
ParserWrapper<3> *field_parser=nullptr);
static void GotoNextLine (std::istream& is);
//! Author of an input file / simulation setup
static std::string authors;
// Initial field on the grid.
static amrex::Vector<amrex::Real> E_external_grid;
static amrex::Vector<amrex::Real> B_external_grid;
// Initialization Type for External E and B on grid
static std::string B_ext_grid_s;
static std::string E_ext_grid_s;
// Parser for B_external on the grid
static std::string str_Bx_ext_grid_function;
static std::string str_By_ext_grid_function;
static std::string str_Bz_ext_grid_function;
// Parser for E_external on the grid
static std::string str_Ex_ext_grid_function;
static std::string str_Ey_ext_grid_function;
static std::string str_Ez_ext_grid_function;
// ParserWrapper for B_external on the grid
std::unique_ptr<ParserWrapper<3> > Bxfield_parser;
std::unique_ptr<ParserWrapper<3> > Byfield_parser;
std::unique_ptr<ParserWrapper<3> > Bzfield_parser;
// ParserWrapper for E_external on the grid
std::unique_ptr<ParserWrapper<3> > Exfield_parser;
std::unique_ptr<ParserWrapper<3> > Eyfield_parser;
std::unique_ptr<ParserWrapper<3> > Ezfield_parser;
// Algorithms
static long current_deposition_algo;
static long charge_deposition_algo;
static long field_gathering_algo;
static long particle_pusher_algo;
static int maxwell_fdtd_solver_id;
// div E cleaning
static int do_dive_cleaning;
// Interpolation order
static long nox;
static long noy;
static long noz;
// Number of modes for the RZ multimode version
static long n_rz_azimuthal_modes;
static long ncomps;
static bool use_fdtd_nci_corr;
static int l_lower_order_in_v;
static bool use_filter;
static bool serialize_ics;
// Back transformation diagnostic
static bool do_back_transformed_diagnostics;
static std::string lab_data_directory;
static int num_snapshots_lab;
static amrex::Real dt_snapshots_lab;
static bool do_back_transformed_fields;
static bool do_back_transformed_particles;
// Boosted frame parameters
static amrex::Real gamma_boost;
static amrex::Real beta_boost;
static amrex::Vector<int> boost_direction;
static amrex::Real zmax_plasma_to_compute_max_step;
static int do_compute_max_step_from_zmax;
static bool do_dynamic_scheduling;
static bool refine_plasma;
static int sort_int;
static amrex::IntVect sort_bin_size;
static int do_subcycling;
static bool safe_guard_cells;
// buffers
static int n_field_gather_buffer; //! in number of cells from the edge (identical for each dimension)
static int n_current_deposition_buffer; //! in number of cells from the edge (identical for each dimension)
// do nodal
static int do_nodal;
const amrex::MultiFab& getcurrent (int lev, int direction) {return *current_fp[lev][direction];}
const amrex::MultiFab& getEfield (int lev, int direction) {return *Efield_aux[lev][direction];}
const amrex::MultiFab& getBfield (int lev, int direction) {return *Bfield_aux[lev][direction];}
const amrex::MultiFab& getcurrent_cp (int lev, int direction) {return *current_cp[lev][direction];}
const amrex::MultiFab& getEfield_cp (int lev, int direction) {return *Efield_cp[lev][direction];}
const amrex::MultiFab& getBfield_cp (int lev, int direction) {return *Bfield_cp[lev][direction];}
const amrex::MultiFab& getcurrent_fp (int lev, int direction) {return *current_fp[lev][direction];}
const amrex::MultiFab& getEfield_fp (int lev, int direction) {return *Efield_fp[lev][direction];}
const amrex::MultiFab& getBfield_fp (int lev, int direction) {return *Bfield_fp[lev][direction];}
/** get low-high-low-high-... vector for each direction indicating if mother grid PMLs are enabled */
std::vector<bool> getPMLdirections() const;
static amrex::MultiFab* getCosts (int lev) {
if (m_instance) {
return m_instance->costs[lev].get();
} else {
return nullptr;
}
}
static amrex::IntVect filter_npass_each_dir;
BilinearFilter bilinear_filter;
amrex::Vector< std::unique_ptr<NCIGodfreyFilter> > nci_godfrey_filter_exeybz;
amrex::Vector< std::unique_ptr<NCIGodfreyFilter> > nci_godfrey_filter_bxbyez;
amrex::Real time_of_last_gal_shift = 0;
amrex::Array<amrex::Real,3> v_galilean = {{0}};
static int num_mirrors;
amrex::Vector<amrex::Real> mirror_z;
amrex::Vector<amrex::Real> mirror_z_width;
amrex::Vector<int> mirror_z_npoints;
/// object with all reduced diagnotics, similar to MultiParticleContainer for species.
MultiReducedDiags* reduced_diags;
void applyMirrors(amrex::Real time);
void ComputeDt ();
// Compute max_step automatically for simulations in a boosted frame.
void computeMaxStepBoostAccelerator(const amrex::Geometry& geom);
int MoveWindow (bool move_j);
/**
* \brief
* This function shifts the boundary of the grid by 'v_galilean*dt'.
* In doding so, only positions attributes are changed while fields remain unchanged.
*/
void ShiftGalileanBoundary ();
void UpdatePlasmaInjectionPosition (amrex::Real dt);
void ResetProbDomain (const amrex::RealBox& rb);
void EvolveE ( amrex::Real dt);
void EvolveE (int lev, amrex::Real dt);
void EvolveB ( amrex::Real dt);
void EvolveB (int lev, amrex::Real dt);
void EvolveF ( amrex::Real dt, DtType dt_type);
void EvolveF (int lev, amrex::Real dt, DtType dt_type);
void EvolveB (int lev, PatchType patch_type, amrex::Real dt);
void EvolveE (int lev, PatchType patch_type, amrex::Real dt);
void EvolveF (int lev, PatchType patch_type, amrex::Real dt, DtType dt_type);
/** \brief apply QED correction on electric field
* \param dt vector of time steps (for all levels)
*/
void Hybrid_QED_Push ( amrex::Vector<amrex::Real> dt);
/** \brief apply QED correction on electric field for level lev
* \param lev mesh refinement level
* \param dt time step
*/
void Hybrid_QED_Push (int lev, amrex::Real dt);
/** \brief apply QED correction on electric field for level lev and patch type patch_type
* \param lev mesh refinement level
* \param dt patch_type which MR patch: PatchType::fine or PatchType::coarse
* \param dt time step
*/
void Hybrid_QED_Push (int lev, PatchType patch_type, amrex::Real dt);
static amrex::Real quantum_xi_c2;
#ifdef WARPX_DIM_RZ
void ApplyInverseVolumeScalingToCurrentDensity(amrex::MultiFab* Jx,
amrex::MultiFab* Jy,
amrex::MultiFab* Jz,
int lev);
void ApplyInverseVolumeScalingToChargeDensity(amrex::MultiFab* Rho,
int lev);
#endif
void DampPML ();
void DampPML (int lev);
void DampPML (int lev, PatchType patch_type);
void DampJPML ();
void DampJPML (int lev);
void DampJPML (int lev, PatchType patch_type);
void CopyJPML ();
PML* GetPML (int lev);
void PushParticlesandDepose (int lev, amrex::Real cur_time, DtType a_dt_type=DtType::Full);
void PushParticlesandDepose ( amrex::Real cur_time);
// This function does aux(lev) = fp(lev) + I(aux(lev-1)-cp(lev)).
// Caller must make sure fp and cp have ghost cells filled.
void UpdateAuxilaryData ();
void UpdateAuxilaryDataStagToNodal ();
void UpdateAuxilaryDataSameType ();
// Fill boundary cells including coarse/fine boundaries
void FillBoundaryB (amrex::IntVect ng, amrex::IntVect ng_extra_fine=amrex::IntVect::TheZeroVector());
void FillBoundaryE (amrex::IntVect ng, amrex::IntVect ng_extra_fine=amrex::IntVect::TheZeroVector());
void FillBoundaryF (amrex::IntVect ng);
void FillBoundaryAux (amrex::IntVect ng);
void FillBoundaryE (int lev, amrex::IntVect ng, amrex::IntVect ng_extra_fine=amrex::IntVect::TheZeroVector());
void FillBoundaryB (int lev, amrex::IntVect ng, amrex::IntVect ng_extra_fine=amrex::IntVect::TheZeroVector());
void FillBoundaryF (int lev, amrex::IntVect ng);
void FillBoundaryAux (int lev, amrex::IntVect ng);
void SyncCurrent ();
void SyncRho ();
int getistep (int lev) const {return istep[lev];}
void setistep (int lev, int ii) {istep[lev] = ii;}
amrex::Real gett_new (int lev) const {return t_new[lev];}
void sett_new (int lev, amrex::Real time) {t_new[lev] = time;}
amrex::Real getdt (int lev) const {return dt[lev];}
int maxStep () const {return max_step;}
amrex::Real stopTime () const {return stop_time;}
int checkInt () const {return check_int;}
int plotInt () const {return plot_int;}
int openpmdInt () const {return openpmd_int;}
void WriteCheckPointFile () const;
void WriteOpenPMDFile () const;
void WritePlotFile () const;
void UpdateInSitu () const;
void AverageAndPackFields( amrex::Vector<std::string>& varnames,
amrex::Vector<amrex::MultiFab>& mf_avg, const int ngrow) const;
void prepareFields( int const step, amrex::Vector<std::string>& varnames,
amrex::Vector<amrex::MultiFab>& mf_avg,
amrex::Vector<const amrex::MultiFab*>& output_mf,
amrex::Vector<amrex::Geometry>& output_geom ) const;
void WritePlotFileES(const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rho,
const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& phi,
const amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E);
static std::array<amrex::Real,3> CellSize (int lev);
static amrex::RealBox getRealBox(const amrex::Box& bx, int lev);
static std::array<amrex::Real,3> LowerCorner (const amrex::Box& bx,
std::array<amrex::Real,3> galilean_shift, int lev);
static std::array<amrex::Real,3> UpperCorner (const amrex::Box& bx, int lev);
static amrex::IntVect RefRatio (int lev);
static const amrex::iMultiFab* CurrentBufferMasks (int lev);
static const amrex::iMultiFab* GatherBufferMasks (int lev);
static amrex::IntVect Bx_nodal_flag;
static amrex::IntVect By_nodal_flag;
static amrex::IntVect Bz_nodal_flag;
static amrex::IntVect Ex_nodal_flag;
static amrex::IntVect Ey_nodal_flag;
static amrex::IntVect Ez_nodal_flag;
static amrex::IntVect jx_nodal_flag;
static amrex::IntVect jy_nodal_flag;
static amrex::IntVect jz_nodal_flag;
static int do_moving_window;
static int moving_window_dir;
static amrex::Real moving_window_v;
// slice generation //
void InitializeSliceMultiFabs ();
void SliceGenerationForDiagnostics ();
void WriteSlicePlotFile () const;
void ClearSliceMultiFabs ();
static int num_slice_snapshots_lab;
static amrex::Real dt_slice_snapshots_lab;
static amrex::Real particle_slice_width_lab;
amrex::RealBox getSliceRealBox() const {return slice_realbox;}
// these should be private, but can't due to Cuda limitations
static void ComputeDivB (amrex::MultiFab& divB, int dcomp,
const std::array<const amrex::MultiFab*, 3>& B,
const std::array<amrex::Real,3>& dx);
static void ComputeDivB (amrex::MultiFab& divB, int dcomp,
const std::array<const amrex::MultiFab*, 3>& B,
const std::array<amrex::Real,3>& dx, int ngrow);
static void ComputeDivE (amrex::MultiFab& divE, int dcomp,
const std::array<const amrex::MultiFab*, 3>& B,
const std::array<amrex::Real,3>& dx);
static void ComputeDivE (amrex::MultiFab& divE, int dcomp,
const std::array<const amrex::MultiFab*, 3>& B,
const std::array<amrex::Real,3>& dx, int ngrow);
const amrex::IntVect getngE() const { return guard_cells.ng_alloc_EB; };
const amrex::IntVect getngF() const { return guard_cells.ng_alloc_F; };
void ComputeSpaceChargeField (bool const reset_fields);
void AddSpaceChargeField (WarpXParticleContainer& pc);
void computePhi (const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rho,
amrex::Vector<std::unique_ptr<amrex::MultiFab> >& phi,
std::array<amrex::Real, 3> const beta = {{0,0,0}},
amrex::Real const required_precision=1.e-11 ) const;
void computeE (amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E,
const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& phi,
std::array<amrex::Real, 3> const beta = {{0,0,0}} ) const;
void computeB (amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& B,
const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& phi,
std::array<amrex::Real, 3> const beta = {{0,0,0}} ) const;
/**
* \brief
* This function initializes the E and B fields on each level
* using the parser and the user-defined function for the external fields.
* The subroutine will parse the x_/y_z_external_grid_function and
* then, the B or E multifab is initialized based on the (x,y,z) position
* on the staggered yee-grid or cell-centered grid.
*/
void InitializeExternalFieldsOnGridUsingParser (
amrex::MultiFab *mfx, amrex::MultiFab *mfy, amrex::MultiFab *mfz,
ParserWrapper<3> *xfield_parser, ParserWrapper<3> *yfield_parser,
ParserWrapper<3> *zfield_parser, amrex::IntVect x_nodal_flag,
amrex::IntVect y_nodal_flag, amrex::IntVect z_nodal_flag,
const int lev);
protected:
/**
* \brief
* This function initializes E, B, rho, and F, at all the levels
* of the multifab. rho and F are initialized with 0.
* The E and B fields are initialized using user-defined inputs.
* The initialization type is set using "B_ext_grid_init_style"
* and "E_ext_grid_init_style". The initialization style is set to "default"
* if not explicitly defined by the user, and the E and B fields are
* initialized with E_external_grid and B_external_grid, respectively, each with
* a default value of 0.
* If the initialization type for the E and B field is "constant",
* then, the E and B fields at all the levels are initialized with
* user-defined values for E_external_grid and B_external_grid.
* If the initialization type for B-field is set to
* "parse_B_ext_grid_function", then, the parser is used to read
* Bx_external_grid_function(x,y,z), By_external_grid_function(x,y,z),
* and Bz_external_grid_function(x,y,z).
* Similarly, if the E-field initialization type is set to
* "parse_E_ext_grid_function", then, the parser is used to read
* Ex_external_grid_function(x,y,z), Ey_external_grid_function(x,y,z),
* and Ex_external_grid_function(x,y,z). The parser for the E and B
* initialization assumes that the function has three independent
* variables, at max, namely, x, y, z. However, any number of constants
* can be used in the function used to define the E and B fields on the grid.
*/
void InitLevelData (int lev, amrex::Real time);
//! Tagging cells for refinement
virtual void ErrorEst (int lev, amrex::TagBoxArray& tags, amrex::Real time, int /*ngrow*/) final;
//! Make a new level from scratch using provided BoxArray and
//! DistributionMapping. Only used during initialization. Called
//! by AmrCoreInitFromScratch.
virtual void MakeNewLevelFromScratch (int lev, amrex::Real time, const amrex::BoxArray& ba,
const amrex::DistributionMapping& dm) final;
//! Make a new level using provided BoxArray and
//! DistributionMapping and fill with interpolated coarse level
//! data. Called by AmrCore::regrid.
virtual void MakeNewLevelFromCoarse (int lev, amrex::Real time, const amrex::BoxArray& ba,
const amrex::DistributionMapping& dm) final
{ amrex::Abort("MakeNewLevelFromCoarse: To be implemented"); }
//! Remake an existing level using provided BoxArray and
//! DistributionMapping and fill with existing fine and coarse
//! data. Called by AmrCore::regrid.
virtual void RemakeLevel (int lev, amrex::Real time, const amrex::BoxArray& ba,
const amrex::DistributionMapping& dm) final;
//! Delete level data. Called by AmrCore::regrid.
virtual void ClearLevel (int lev) final;
private:
// Singleton is used when the code is run from python
static WarpX* m_instance;
///
/// Advance the simulation by numsteps steps, electromagnetic case.
///
void EvolveEM(int numsteps);
void FillBoundaryB (int lev, PatchType patch_type, amrex::IntVect ng);
void FillBoundaryE (int lev, PatchType patch_type, amrex::IntVect ng);
void FillBoundaryF (int lev, PatchType patch_type, amrex::IntVect ng);
void OneStep_nosub (amrex::Real t);
void OneStep_sub1 (amrex::Real t);
void RestrictCurrentFromFineToCoarsePatch (int lev);
void AddCurrentFromFineLevelandSumBoundary (int lev);
void StoreCurrent (int lev);
void RestoreCurrent (int lev);
void ApplyFilterandSumBoundaryJ (int lev, PatchType patch_type);
void NodalSyncJ (int lev, PatchType patch_type);
void RestrictRhoFromFineToCoarsePatch (int lev);
void ApplyFilterandSumBoundaryRho (int lev, PatchType patch_type, int icomp, int ncomp);
void AddRhoFromFineLevelandSumBoundary (int lev, int icomp, int ncomp);
void NodalSyncRho (int lev, PatchType patch_type, int icomp, int ncomp);
#ifdef WARPX_DO_ELECTROSTATIC
///
/// Advance the simulation by numsteps steps, electrostatic case.
///
void EvolveES(int numsteps);
//
// This stuff is needed by the nodal multigrid solver when running in
// electrostatic mode.
//
void zeroOutBoundary(amrex::MultiFab& input_data, amrex::MultiFab& bndry_data,
const amrex::FabArray<amrex::BaseFab<int> >& mask) const;
void fixRHSForSolve(amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rhs,
const amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > >& masks) const ;
void getLevelMasks(amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > >& masks,
const int nnodes = 1);
// used to zero out fine level data on points shared with the coarse grid
// in electrostatic mode
amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > > masks;
// used to gather the field from the coarse level in electrostatic mode.
amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > > gather_masks;
#endif // WARPX_DO_ELECTROSTATIC
void ReadParameters ();
void InitFromScratch ();
void AllocLevelData (int lev, const amrex::BoxArray& new_grids,
const amrex::DistributionMapping& new_dmap);
void InitFromCheckpoint ();
void PostRestart ();
void InitPML ();
void ComputePMLFactors ();
void InitFilter ();
void InitDiagnostics ();
void InitNCICorrector ();
void WriteWarpXHeader(const std::string& name) const;
void WriteJobInfo (const std::string& dir) const;
std::unique_ptr<amrex::MultiFab> GetCellCenteredData();
std::array<std::unique_ptr<amrex::MultiFab>, 3> getInterpolatedE(int lev) const;
std::array<std::unique_ptr<amrex::MultiFab>, 3> getInterpolatedB(int lev) const;
void ExchangeWithPmlB (int lev);
void ExchangeWithPmlE (int lev);
void ExchangeWithPmlF (int lev);
void LoadBalance ();
void BuildBufferMasks ();
void BuildBufferMasksInBox ( const amrex::Box tbx, amrex::IArrayBox &buffer_mask,
const amrex::IArrayBox &guard_mask, const int ng );
const amrex::iMultiFab* getCurrentBufferMasks (int lev) const {
return current_buffer_masks[lev].get();
}
const amrex::iMultiFab* getGatherBufferMasks (int lev) const {
return gather_buffer_masks[lev].get();
}
void AllocLevelMFs (int lev, const amrex::BoxArray& ba, const amrex::DistributionMapping& dm,
const amrex::IntVect& ngE, const amrex::IntVect& ngJ,
const amrex::IntVect& ngRho, const amrex::IntVect& ngF,
const amrex::IntVect& ngextra, const bool aux_is_nodal);
amrex::Vector<int> istep; // which step?
amrex::Vector<int> nsubsteps; // how many substeps on each level?
amrex::Vector<amrex::Real> t_new;
amrex::Vector<amrex::Real> t_old;
amrex::Vector<amrex::Real> dt;
// Particle container
std::unique_ptr<MultiParticleContainer> mypc;
// Boosted Frame Diagnostics
std::unique_ptr<BackTransformedDiagnostic> myBFD;
//
// Fields: First array for level, second for direction
//
// Full solution
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_aux;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_aux;
// Fine patch
amrex::Vector< std::unique_ptr<amrex::MultiFab> > F_fp;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > rho_fp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_fp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_fp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_fp;
// store fine patch
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_store;
// Coarse patch
amrex::Vector< std::unique_ptr<amrex::MultiFab> > F_cp;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > rho_cp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_cp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_cp;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_cp;
// Copy of the coarse aux
amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3 > > Efield_cax;
amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_cax;
amrex::Vector<std::unique_ptr<amrex::iMultiFab> > current_buffer_masks;
amrex::Vector<std::unique_ptr<amrex::iMultiFab> > gather_buffer_masks;
// If charge/current deposition buffers are used
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_buf;
amrex::Vector<std::unique_ptr<amrex::MultiFab> > charge_buf;
// PML
int do_pml = 1;
int pml_ncell = 10;
int pml_delta = 10;
int pml_has_particles = 0;
int do_pml_j_damping = 0;
int do_pml_in_domain = 0;
amrex::IntVect do_pml_Lo = amrex::IntVect::TheUnitVector();
amrex::IntVect do_pml_Hi = amrex::IntVect::TheUnitVector();
amrex::Vector<std::unique_ptr<PML> > pml;
amrex::Real moving_window_x = std::numeric_limits<amrex::Real>::max();
amrex::Real current_injection_position = 0;
// Plasma injection parameters
int warpx_do_continuous_injection = 0;
int num_injected_species = -1;
amrex::Vector<int> injected_plasma_species;
int do_electrostatic = 0;
int n_buffer = 4;
amrex::Real const_dt = 0.5e-11;
int load_balance_int = -1;
amrex::Vector<std::unique_ptr<amrex::MultiFab> > costs;
int load_balance_with_sfc = 0;
amrex::Real load_balance_knapsack_factor = 1.24;
// Override sync every ? steps
int override_sync_int = 1;
// Other runtime parameters
int verbose = 1;
bool use_hybrid_QED = 0;
int max_step = std::numeric_limits<int>::max();
amrex::Real stop_time = std::numeric_limits<amrex::Real>::max();
int regrid_int = -1;
amrex::Real cfl = 0.7;
std::string restart_chkfile;
std::string check_file {"checkpoints/chk"};
std::string plot_file {"diags/plotfiles/plt"};
std::string slice_plot_file {"diags/slice_plotfiles/plt"};
int check_int = -1;
int plot_int = -1;
std::string openpmd_backend {"default"};
int openpmd_int = -1;
bool openpmd_tspf = true; //!< one file per timestep (or one file for all steps)
#ifdef WARPX_USE_OPENPMD
WarpXOpenPMDPlot* m_OpenPMDPlotWriter = nullptr;
#endif
bool plot_rho = false;
bool plot_costs = true;
bool plot_finepatch = false;
bool plot_crsepatch = false;
bool plot_raw_fields = false;
bool plot_raw_fields_guards = false;
amrex::Vector<std::string> fields_to_plot;
int plot_coarsening_ratio = 1;
amrex::VisMF::Header::Version checkpoint_headerversion = amrex::VisMF::Header::NoFabHeader_v1;
amrex::VisMF::Header::Version plotfile_headerversion = amrex::VisMF::Header::Version_v1;
amrex::VisMF::Header::Version slice_plotfile_headerversion = amrex::VisMF::Header::Version_v1;
bool use_single_read = true;
bool use_single_write = true;
int mffile_nstreams = 4;
int field_io_nfiles = 1024;
int particle_io_nfiles = 1024;
amrex::RealVect fine_tag_lo;
amrex::RealVect fine_tag_hi;
bool is_synchronized = true;
guardCellManager guard_cells;
//Slice Parameters
int slice_max_grid_size;
int slice_plot_int = -1;
amrex::RealBox slice_realbox;
amrex::IntVect slice_cr_ratio;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > F_slice;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > rho_slice;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_slice;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_slice;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_slice;
#ifdef WARPX_USE_PSATD_HYBRID
// Store fields in real space on the dual grid (i.e. the grid for the FFT push of the fields)
// This includes data for the FFT guard cells (between FFT groups)
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_fp_fft;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_fp_fft;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_fp_fft;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > rho_fp_fft;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Efield_cp_fft;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > Bfield_cp_fft;
amrex::Vector<std::array< std::unique_ptr<amrex::MultiFab>, 3 > > current_cp_fft;
amrex::Vector< std::unique_ptr<amrex::MultiFab> > rho_cp_fft;
#endif
bool fft_hybrid_mpi_decomposition = false;
int nox_fft = 16;
int noy_fft = 16;
int noz_fft = 16;
#ifdef WARPX_USE_PSATD
private:
void EvolvePSATD (int numsteps);
void PushPSATD (amrex::Real dt);
void PushPSATD_localFFT (int lev, amrex::Real dt);
int ngroups_fft = 4;
int fftw_plan_measure = 1;
amrex::Vector<std::unique_ptr<SpectralSolver>> spectral_solver_fp;
amrex::Vector<std::unique_ptr<SpectralSolver>> spectral_solver_cp;
#endif
amrex::Vector<std::unique_ptr<FiniteDifferenceSolver>> m_fdtd_solver_fp;
amrex::Vector<std::unique_ptr<FiniteDifferenceSolver>> m_fdtd_solver_cp;
#ifdef WARPX_USE_PSATD_HYBRID
private:
amrex::Vector<std::unique_ptr<amrex::LayoutData<FFTData> > > dataptr_fp_fft;
amrex::Vector<std::unique_ptr<amrex::LayoutData<FFTData> > > dataptr_cp_fft;
// Domain decomposition containing the valid part of the dual grids (i.e. without FFT guard cells)
amrex::Vector<amrex::BoxArray> ba_valid_fp_fft;
amrex::Vector<amrex::BoxArray> ba_valid_cp_fft;
amrex::Vector<amrex::Box> domain_fp_fft; // "global" domain for the group this process belongs to
amrex::Vector<amrex::Box> domain_cp_fft;
amrex::Vector<MPI_Comm> comm_fft;
amrex::Vector<int> color_fft;
void AllocLevelDataFFT (int lev);
void InitLevelDataFFT (int lev, amrex::Real time);
void InitFFTComm (int lev);
void FFTDomainDecomposition (int lev, amrex::BoxArray& ba_fft, amrex::DistributionMapping& dm_fft,
amrex::BoxArray& ba_valid, amrex::Box& domain_fft,
const amrex::Box& domain);
void InitFFTDataPlan (int lev);
void FreeFFT (int lev);
void PushPSATD_hybridFFT (int lev, amrex::Real dt);
#endif
#if defined(BL_USE_SENSEI_INSITU)
amrex::AmrMeshInSituBridge *insitu_bridge;
#endif
int insitu_int;
int insitu_start;
std::string insitu_config;
int insitu_pin_mesh;
};
#endif
|