aboutsummaryrefslogtreecommitdiff
path: root/Source/WarpX.cpp
blob: 5f6f2b2e507cf1c09cddb277f35258a03c273e00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
#include <WarpX.H>
#include <WarpX_f.H>
#include <WarpXConst.H>
#include <WarpXWrappers.h>
#include <WarpXUtil.H>
#include <WarpXAlgorithmSelection.H>
#include <WarpX_FDTD.H>

#include <AMReX_ParmParse.H>
#include <AMReX_MultiFabUtil.H>
#ifdef BL_USE_SENSEI_INSITU
#   include <AMReX_AmrMeshInSituBridge.H>
#endif

#ifdef _OPENMP
#   include <omp.h>
#endif

#include <limits>
#include <algorithm>
#include <cctype>
#include <cmath>
#include <numeric>

using namespace amrex;

Vector<Real> WarpX::E_external_grid(3, 0.0);
Vector<Real> WarpX::B_external_grid(3, 0.0);

std::string WarpX::authors = "";
std::string WarpX::B_ext_grid_s = "default";
std::string WarpX::E_ext_grid_s = "default";

// Parser for B_external on the grid
std::string WarpX::str_Bx_ext_grid_function;
std::string WarpX::str_By_ext_grid_function;
std::string WarpX::str_Bz_ext_grid_function;
// Parser for E_external on the grid
std::string WarpX::str_Ex_ext_grid_function;
std::string WarpX::str_Ey_ext_grid_function;
std::string WarpX::str_Ez_ext_grid_function;

int WarpX::do_moving_window = 0;
int WarpX::moving_window_dir = -1;
Real WarpX::moving_window_v = std::numeric_limits<amrex::Real>::max();

Real WarpX::gamma_boost = 1.;
Real WarpX::beta_boost = 0.;
Vector<int> WarpX::boost_direction = {0,0,0};
int WarpX::do_compute_max_step_from_zmax = 0;
Real WarpX::zmax_plasma_to_compute_max_step = 0.;

long WarpX::current_deposition_algo;
long WarpX::charge_deposition_algo;
long WarpX::field_gathering_algo;
long WarpX::particle_pusher_algo;
int WarpX::maxwell_fdtd_solver_id;
int WarpX::do_dive_cleaning = 0;

long WarpX::n_rz_azimuthal_modes = 1;
long WarpX::ncomps = 1;

long WarpX::nox = 1;
long WarpX::noy = 1;
long WarpX::noz = 1;

bool WarpX::use_fdtd_nci_corr = false;
int  WarpX::l_lower_order_in_v = true;

bool WarpX::use_filter        = false;
bool WarpX::serialize_ics     = false;
bool WarpX::refine_plasma     = false;

int WarpX::num_mirrors = 0;

int  WarpX::sort_int = -1;

bool WarpX::do_back_transformed_diagnostics = false;
std::string WarpX::lab_data_directory = "lab_frame_data";
int  WarpX::num_snapshots_lab = std::numeric_limits<int>::lowest();
Real WarpX::dt_snapshots_lab  = std::numeric_limits<Real>::lowest();
bool WarpX::do_back_transformed_fields = true;
bool WarpX::do_back_transformed_particles = true;

int  WarpX::num_slice_snapshots_lab = 0;
Real WarpX::dt_slice_snapshots_lab;
Real WarpX::particle_slice_width_lab = 0.0;

bool WarpX::do_dynamic_scheduling = true;

int WarpX::do_subcycling = 0;
bool WarpX::exchange_all_guard_cells = 0;

#if (AMREX_SPACEDIM == 3)
IntVect WarpX::Bx_nodal_flag(1,0,0);
IntVect WarpX::By_nodal_flag(0,1,0);
IntVect WarpX::Bz_nodal_flag(0,0,1);
#elif (AMREX_SPACEDIM == 2)
IntVect WarpX::Bx_nodal_flag(1,0);// x is the first dimension to AMReX
IntVect WarpX::By_nodal_flag(0,0);// y is the missing dimension to 2D AMReX
IntVect WarpX::Bz_nodal_flag(0,1);// z is the second dimension to 2D AMReX
#endif

#if (AMREX_SPACEDIM == 3)
IntVect WarpX::Ex_nodal_flag(0,1,1);
IntVect WarpX::Ey_nodal_flag(1,0,1);
IntVect WarpX::Ez_nodal_flag(1,1,0);
#elif (AMREX_SPACEDIM == 2)
IntVect WarpX::Ex_nodal_flag(0,1);// x is the first dimension to AMReX
IntVect WarpX::Ey_nodal_flag(1,1);// y is the missing dimension to 2D AMReX
IntVect WarpX::Ez_nodal_flag(1,0);// z is the second dimension to 2D AMReX
#endif

#if (AMREX_SPACEDIM == 3)
IntVect WarpX::jx_nodal_flag(0,1,1);
IntVect WarpX::jy_nodal_flag(1,0,1);
IntVect WarpX::jz_nodal_flag(1,1,0);
#elif (AMREX_SPACEDIM == 2)
IntVect WarpX::jx_nodal_flag(0,1);// x is the first dimension to AMReX
IntVect WarpX::jy_nodal_flag(1,1);// y is the missing dimension to 2D AMReX
IntVect WarpX::jz_nodal_flag(1,0);// z is the second dimension to 2D AMReX
#endif

IntVect WarpX::filter_npass_each_dir(1);

int WarpX::n_field_gather_buffer = -1;
int WarpX::n_current_deposition_buffer = -1;

int WarpX::do_nodal = false;

WarpX* WarpX::m_instance = nullptr;

WarpX&
WarpX::GetInstance ()
{
    if (!m_instance) {
        m_instance = new WarpX();
    }
    return *m_instance;
}

void
WarpX::ResetInstance ()
{
    delete m_instance;
    m_instance = nullptr;
}

WarpX::WarpX ()
{
    m_instance = this;

    ReadParameters();

#ifdef WARPX_USE_OPENPMD
    m_OpenPMDPlotWriter = new WarpXOpenPMDPlot(openpmd_tspf, openpmd_backend, WarpX::getPMLdirections());
#endif

    // Geometry on all levels has been defined already.

    // No valid BoxArray and DistributionMapping have been defined.
    // But the arrays for them have been resized.

    const int nlevs_max = maxLevel() + 1;

    istep.resize(nlevs_max, 0);
    nsubsteps.resize(nlevs_max, 1);
#if 0
    // no subcycling yet
    for (int lev = 1; lev < nlevs_max; ++lev) {
        nsubsteps[lev] = MaxRefRatio(lev-1);
    }
#endif

    t_new.resize(nlevs_max, 0.0);
    t_old.resize(nlevs_max, std::numeric_limits<Real>::lowest());
    dt.resize(nlevs_max, std::numeric_limits<Real>::max());

    // Particle Container
    mypc = std::unique_ptr<MultiParticleContainer> (new MultiParticleContainer(this));
    warpx_do_continuous_injection = mypc->doContinuousInjection();
    if (warpx_do_continuous_injection){
        if (moving_window_v >= 0){
            // Inject particles continuously from the right end of the box
            current_injection_position = geom[0].ProbHi(moving_window_dir);
        } else {
            // Inject particles continuously from the left end of the box
            current_injection_position = geom[0].ProbLo(moving_window_dir);
        }
    }
    do_back_transformed_particles = mypc->doBackTransformedDiagnostics();

    Efield_aux.resize(nlevs_max);
    Bfield_aux.resize(nlevs_max);

    F_fp.resize(nlevs_max);
    rho_fp.resize(nlevs_max);
    current_fp.resize(nlevs_max);
    Efield_fp.resize(nlevs_max);
    Bfield_fp.resize(nlevs_max);

    current_store.resize(nlevs_max);

    F_cp.resize(nlevs_max);
    rho_cp.resize(nlevs_max);
    current_cp.resize(nlevs_max);
    Efield_cp.resize(nlevs_max);
    Bfield_cp.resize(nlevs_max);

    Efield_cax.resize(nlevs_max);
    Bfield_cax.resize(nlevs_max);
    current_buffer_masks.resize(nlevs_max);
    gather_buffer_masks.resize(nlevs_max);
    current_buf.resize(nlevs_max);
    charge_buf.resize(nlevs_max);

    pml.resize(nlevs_max);

#ifdef WARPX_DO_ELECTROSTATIC
    masks.resize(nlevs_max);
    gather_masks.resize(nlevs_max);
#endif // WARPX_DO_ELECTROSTATIC

    costs.resize(nlevs_max);

#ifdef WARPX_USE_PSATD
    spectral_solver_fp.resize(nlevs_max);
    spectral_solver_cp.resize(nlevs_max);
#endif
#ifdef WARPX_USE_PSATD_HYBRID
    Efield_fp_fft.resize(nlevs_max);
    Bfield_fp_fft.resize(nlevs_max);
    current_fp_fft.resize(nlevs_max);
    rho_fp_fft.resize(nlevs_max);

    Efield_cp_fft.resize(nlevs_max);
    Bfield_cp_fft.resize(nlevs_max);
    current_cp_fft.resize(nlevs_max);
    rho_cp_fft.resize(nlevs_max);

    dataptr_fp_fft.resize(nlevs_max);
    dataptr_cp_fft.resize(nlevs_max);

    ba_valid_fp_fft.resize(nlevs_max);
    ba_valid_cp_fft.resize(nlevs_max);

    domain_fp_fft.resize(nlevs_max);
    domain_cp_fft.resize(nlevs_max);

    comm_fft.resize(nlevs_max,MPI_COMM_NULL);
    color_fft.resize(nlevs_max,-1);
#endif

#ifdef BL_USE_SENSEI_INSITU
    insitu_bridge = nullptr;
#endif

    // NCI Godfrey filters can have different stencils
    // at different levels (the stencil depends on c*dt/dz)
    nci_godfrey_filter_exeybz.resize(nlevs_max);
    nci_godfrey_filter_bxbyez.resize(nlevs_max);

    // Sanity checks. Must be done after calling the MultiParticleContainer
    // constructor, as it reads additional parameters
    // (e.g., use_fdtd_nci_corr)

#ifndef WARPX_USE_PSATD
    AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
        not ( do_pml && do_nodal ),
        "PML + do_nodal for finite-difference not implemented"
        );
#endif
    AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
        not ( do_dive_cleaning && do_nodal ),
        "divE cleaning + do_nodal not implemented"
        );
#ifdef WARPX_USE_PSATD
    AMREX_ALWAYS_ASSERT(use_fdtd_nci_corr == 0);
    AMREX_ALWAYS_ASSERT(do_subcycling == 0);
#endif
}

WarpX::~WarpX ()
{
    const int nlevs_max = maxLevel() +1;
    for (int lev = 0; lev < nlevs_max; ++lev) {
        ClearLevel(lev);
    }

#ifdef BL_USE_SENSEI_INSITU
    delete insitu_bridge;
#endif

#ifdef WARPX_USE_OPENPMD
    delete m_OpenPMDPlotWriter;
#endif
}

void
WarpX::ReadParameters ()
{
    {
        ParmParse pp;// Traditionally, max_step and stop_time do not have prefix.
        pp.query("max_step", max_step);
        pp.query("stop_time", stop_time);
        pp.query("authors", authors);
    }

    {
        ParmParse pp("amr");// Traditionally, these have prefix, amr.

        pp.query("check_file", check_file);
        pp.query("check_int", check_int);

        pp.query("plot_file", plot_file);
        pp.query("plot_int", plot_int);

        pp.query("restart", restart_chkfile);
    }

    {
        ParmParse pp("warpx");

        pp.query("cfl", cfl);
        pp.query("verbose", verbose);
        pp.query("regrid_int", regrid_int);
        pp.query("do_subcycling", do_subcycling);
        pp.query("exchange_all_guard_cells", exchange_all_guard_cells);
        pp.query("override_sync_int", override_sync_int);

        AMREX_ALWAYS_ASSERT_WITH_MESSAGE(do_subcycling != 1 || max_level <= 1,
                                         "Subcycling method 1 only works for 2 levels.");

        ReadBoostedFrameParameters(gamma_boost, beta_boost, boost_direction);

        // pp.query returns 1 if argument zmax_plasma_to_compute_max_step is
        // specified by the user, 0 otherwise.
        do_compute_max_step_from_zmax =
            pp.query("zmax_plasma_to_compute_max_step",
                      zmax_plasma_to_compute_max_step);

        pp.query("do_moving_window", do_moving_window);
        if (do_moving_window)
        {
            std::string s;
            pp.get("moving_window_dir", s);
            if (s == "x" || s == "X") {
                moving_window_dir = 0;
            }
#if (AMREX_SPACEDIM == 3)
            else if (s == "y" || s == "Y") {
                moving_window_dir = 1;
            }
#endif
            else if (s == "z" || s == "Z") {
                moving_window_dir = AMREX_SPACEDIM-1;
            }
            else {
                const std::string msg = "Unknown moving_window_dir: "+s;
                amrex::Abort(msg.c_str());
            }

            AMREX_ALWAYS_ASSERT_WITH_MESSAGE(Geom(0).isPeriodic(moving_window_dir) == 0,
                       "The problem must be non-periodic in the moving window direction");

            moving_window_x = geom[0].ProbLo(moving_window_dir);

            pp.get("moving_window_v", moving_window_v);
            moving_window_v *= PhysConst::c;
        }

        pp.query("do_back_transformed_diagnostics", do_back_transformed_diagnostics);
        if (do_back_transformed_diagnostics) {

            AMREX_ALWAYS_ASSERT_WITH_MESSAGE(gamma_boost > 1.0,
                   "gamma_boost must be > 1 to use the boosted frame diagnostic.");

            pp.query("lab_data_directory", lab_data_directory);

            std::string s;
            pp.get("boost_direction", s);
            AMREX_ALWAYS_ASSERT_WITH_MESSAGE( (s == "z" || s == "Z"),
                   "The boosted frame diagnostic currently only works if the boost is in the z direction.");

            pp.get("num_snapshots_lab", num_snapshots_lab);

            // Read either dz_snapshots_lab or dt_snapshots_lab
            bool snapshot_interval_is_specified = 0;
            Real dz_snapshots_lab = 0;
            snapshot_interval_is_specified += pp.query("dt_snapshots_lab", dt_snapshots_lab);
            if ( pp.query("dz_snapshots_lab", dz_snapshots_lab) ){
                dt_snapshots_lab = dz_snapshots_lab/PhysConst::c;
                snapshot_interval_is_specified = 1;
            }
            AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
                snapshot_interval_is_specified,
                "When using back-transformed diagnostics, user should specify either dz_snapshots_lab or dt_snapshots_lab.");

            pp.get("gamma_boost", gamma_boost);

            pp.query("do_back_transformed_fields", do_back_transformed_fields);

            AMREX_ALWAYS_ASSERT_WITH_MESSAGE(do_moving_window,
                   "The moving window should be on if using the boosted frame diagnostic.");

            pp.get("moving_window_dir", s);
            AMREX_ALWAYS_ASSERT_WITH_MESSAGE( (s == "z" || s == "Z"),
                   "The boosted frame diagnostic currently only works if the moving window is in the z direction.");
        }

        pp.query("do_electrostatic", do_electrostatic);
        pp.query("n_buffer", n_buffer);
        pp.query("const_dt", const_dt);

        // Read filter and fill IntVect filter_npass_each_dir with
        // proper size for AMREX_SPACEDIM
        pp.query("use_filter", use_filter);
        Vector<int> parse_filter_npass_each_dir(AMREX_SPACEDIM,1);
        pp.queryarr("filter_npass_each_dir", parse_filter_npass_each_dir);
        filter_npass_each_dir[0] = parse_filter_npass_each_dir[0];
        filter_npass_each_dir[1] = parse_filter_npass_each_dir[1];
#if (AMREX_SPACEDIM == 3)
        filter_npass_each_dir[2] = parse_filter_npass_each_dir[2];
#endif

        pp.query("num_mirrors", num_mirrors);
        if (num_mirrors>0){
            mirror_z.resize(num_mirrors);
            pp.getarr("mirror_z", mirror_z, 0, num_mirrors);
            mirror_z_width.resize(num_mirrors);
            pp.getarr("mirror_z_width", mirror_z_width, 0, num_mirrors);
            mirror_z_npoints.resize(num_mirrors);
            pp.getarr("mirror_z_npoints", mirror_z_npoints, 0, num_mirrors);
        }

        pp.query("serialize_ics", serialize_ics);
        pp.query("refine_plasma", refine_plasma);
        pp.query("do_dive_cleaning", do_dive_cleaning);
        pp.query("n_field_gather_buffer", n_field_gather_buffer);
        pp.query("n_current_deposition_buffer", n_current_deposition_buffer);
        pp.query("sort_int", sort_int);

        pp.query("do_pml", do_pml);
        pp.query("pml_ncell", pml_ncell);
        pp.query("pml_delta", pml_delta);
        pp.query("pml_has_particles", pml_has_particles);
        pp.query("do_pml_j_damping", do_pml_j_damping);
        pp.query("do_pml_in_domain", do_pml_in_domain);

        Vector<int> parse_do_pml_Lo(AMREX_SPACEDIM,1);
        pp.queryarr("do_pml_Lo", parse_do_pml_Lo);
        do_pml_Lo[0] = parse_do_pml_Lo[0];
        do_pml_Lo[1] = parse_do_pml_Lo[1];
#if (AMREX_SPACEDIM == 3)
        do_pml_Lo[2] = parse_do_pml_Lo[2];
#endif
        Vector<int> parse_do_pml_Hi(AMREX_SPACEDIM,1);
        pp.queryarr("do_pml_Hi", parse_do_pml_Hi);
        do_pml_Hi[0] = parse_do_pml_Hi[0];
        do_pml_Hi[1] = parse_do_pml_Hi[1];
#if (AMREX_SPACEDIM == 3)
        do_pml_Hi[2] = parse_do_pml_Hi[2];
#endif

        if ( (do_pml_j_damping==1)&&(do_pml_in_domain==0) ){
            amrex::Abort("J-damping can only be done when PML are inside simulation domain (do_pml_in_domain=1)");
        }

        pp.query("dump_openpmd", dump_openpmd);
        pp.query("openpmd_backend", openpmd_backend);
#ifdef WARPX_USE_OPENPMD
        pp.query("openpmd_tspf", openpmd_tspf);
#endif
        pp.query("dump_plotfiles", dump_plotfiles);
        pp.query("plot_costs", plot_costs);
        pp.query("plot_raw_fields", plot_raw_fields);
        pp.query("plot_raw_fields_guards", plot_raw_fields_guards);
        pp.query("plot_coarsening_ratio", plot_coarsening_ratio);
        bool user_fields_to_plot;
        user_fields_to_plot = pp.queryarr("fields_to_plot", fields_to_plot);
        if (not user_fields_to_plot){
            // If not specified, set default values
            fields_to_plot = {"Ex", "Ey", "Ez", "Bx", "By",
                              "Bz", "jx", "jy", "jz",
                              "part_per_cell"};
        }
        // set plot_rho to true of the users requests it, so that
        // rho is computed at each iteration.
        if (std::find(fields_to_plot.begin(), fields_to_plot.end(), "rho")
            != fields_to_plot.end()){
            plot_rho = true;
        }
        // Sanity check if user requests to plot F
        if (std::find(fields_to_plot.begin(), fields_to_plot.end(), "F")
            != fields_to_plot.end()){
            AMREX_ALWAYS_ASSERT_WITH_MESSAGE(do_dive_cleaning,
                "plot F only works if warpx.do_dive_cleaning = 1");
        }
        // If user requests to plot proc_number for a serial run,
        // delete proc_number from fields_to_plot
        if (ParallelDescriptor::NProcs() == 1){
            fields_to_plot.erase(std::remove(fields_to_plot.begin(),
                                             fields_to_plot.end(),
                                             "proc_number"),
                                 fields_to_plot.end());
        }

        // Check that the coarsening_ratio can divide the blocking factor
        const int nlevs_max = maxLevel();
        for (int lev=0; lev<nlevs_max; lev++){
          for (int comp=0; comp<AMREX_SPACEDIM; comp++){
            if ( blockingFactor(lev)[comp] % plot_coarsening_ratio != 0 ){
              amrex::Abort("plot_coarsening_ratio should be an integer "
                           "divisor of the blocking factor.");
            }
          }
        }

        pp.query("plot_finepatch", plot_finepatch);
        if (maxLevel() > 0) {
            pp.query("plot_crsepatch", plot_crsepatch);
        }

        {
            bool plotfile_min_max = true;
            pp.query("plotfile_min_max", plotfile_min_max);
            if (plotfile_min_max) {
                plotfile_headerversion = amrex::VisMF::Header::Version_v1;
            } else {
                plotfile_headerversion = amrex::VisMF::Header::NoFabHeader_v1;
            }
            pp.query("usesingleread", use_single_read);
            pp.query("usesinglewrite", use_single_write);
            ParmParse ppv("vismf");
            ppv.add("usesingleread", use_single_read);
            ppv.add("usesinglewrite", use_single_write);
            pp.query("mffile_nstreams", mffile_nstreams);
            VisMF::SetMFFileInStreams(mffile_nstreams);
            pp.query("field_io_nfiles", field_io_nfiles);
            VisMF::SetNOutFiles(field_io_nfiles);
            pp.query("particle_io_nfiles", particle_io_nfiles);
            ParmParse ppp("particles");
            ppp.add("particles_nfiles", particle_io_nfiles);
        }

        if (maxLevel() > 0) {
            Vector<Real> lo, hi;
            pp.getarr("fine_tag_lo", lo);
            pp.getarr("fine_tag_hi", hi);
            fine_tag_lo = RealVect{lo};
            fine_tag_hi = RealVect{hi};
        }

        pp.query("load_balance_int", load_balance_int);
        pp.query("load_balance_with_sfc", load_balance_with_sfc);
        pp.query("load_balance_knapsack_factor", load_balance_knapsack_factor);

        pp.query("do_dynamic_scheduling", do_dynamic_scheduling);

        pp.query("do_nodal", do_nodal);
        if (do_nodal) {
            Bx_nodal_flag = IntVect::TheNodeVector();
            By_nodal_flag = IntVect::TheNodeVector();
            Bz_nodal_flag = IntVect::TheNodeVector();
            Ex_nodal_flag = IntVect::TheNodeVector();
            Ey_nodal_flag = IntVect::TheNodeVector();
            Ez_nodal_flag = IntVect::TheNodeVector();
            jx_nodal_flag = IntVect::TheNodeVector();
            jy_nodal_flag = IntVect::TheNodeVector();
            jz_nodal_flag = IntVect::TheNodeVector();
            // Use same shape factors in all directions, for gathering
            l_lower_order_in_v = false;
        }

        // Only needs to be set with WARPX_DIM_RZ, otherwise defaults to 1.
        pp.query("n_rz_azimuthal_modes", n_rz_azimuthal_modes);
    }

    {
        ParmParse pp("interpolation");
        pp.query("nox", nox);
        pp.query("noy", noy);
        pp.query("noz", noz);
        AMREX_ALWAYS_ASSERT_WITH_MESSAGE( nox == noy and nox == noz ,
            "warpx.nox, noy and noz must be equal");
        AMREX_ALWAYS_ASSERT_WITH_MESSAGE( nox >= 1, "warpx.nox must >= 1");
    }

    {
        ParmParse pp("algo");
        current_deposition_algo = GetAlgorithmInteger(pp, "current_deposition");
        charge_deposition_algo = GetAlgorithmInteger(pp, "charge_deposition");
        particle_pusher_algo = GetAlgorithmInteger(pp, "particle_pusher");
        maxwell_fdtd_solver_id = GetAlgorithmInteger(pp, "maxwell_fdtd_solver");
        field_gathering_algo = GetAlgorithmInteger(pp, "field_gathering");
        if (field_gathering_algo == GatheringAlgo::MomentumConserving) {
            // Use same shape factors in all directions, for gathering
            l_lower_order_in_v = false;
        }
    }

#ifdef WARPX_USE_PSATD
    {
        ParmParse pp("psatd");
        pp.query("hybrid_mpi_decomposition", fft_hybrid_mpi_decomposition);
        pp.query("ngroups_fft", ngroups_fft);
        pp.query("fftw_plan_measure", fftw_plan_measure);
        pp.query("nox", nox_fft);
        pp.query("noy", noy_fft);
        pp.query("noz", noz_fft);
    }
#endif

    {
        insitu_start = 0;
        insitu_int = 0;
        insitu_config = "";
        insitu_pin_mesh = 0;

        ParmParse pp("insitu");
        pp.query("int", insitu_int);
        pp.query("start", insitu_start);
        pp.query("config", insitu_config);
        pp.query("pin_mesh", insitu_pin_mesh);
    }

    // for slice generation //
    {
       ParmParse pp("slice");
       amrex::Vector<Real> slice_lo(AMREX_SPACEDIM);
       amrex::Vector<Real> slice_hi(AMREX_SPACEDIM);
       Vector<int> slice_crse_ratio(AMREX_SPACEDIM);
       // set default slice_crse_ratio //
       for (int idim=0; idim < AMREX_SPACEDIM; ++idim )
       {
          slice_crse_ratio[idim] = 1;
       }
       pp.queryarr("dom_lo",slice_lo,0,AMREX_SPACEDIM);
       pp.queryarr("dom_hi",slice_hi,0,AMREX_SPACEDIM);
       pp.queryarr("coarsening_ratio",slice_crse_ratio,0,AMREX_SPACEDIM);
       pp.query("plot_int",slice_plot_int);
       slice_realbox.setLo(slice_lo);
       slice_realbox.setHi(slice_hi);
       slice_cr_ratio = IntVect(AMREX_D_DECL(1,1,1));
       for (int idim = 0; idim < AMREX_SPACEDIM; ++idim)
       {
          if (slice_crse_ratio[idim] > 1 ) {
             slice_cr_ratio[idim] = slice_crse_ratio[idim];
          }
       }

       if (do_back_transformed_diagnostics) {
          AMREX_ALWAYS_ASSERT_WITH_MESSAGE(gamma_boost > 1.0,
                 "gamma_boost must be > 1 to use the boost frame diagnostic");
          pp.query("num_slice_snapshots_lab", num_slice_snapshots_lab);
          if (num_slice_snapshots_lab > 0) {
             pp.get("dt_slice_snapshots_lab", dt_slice_snapshots_lab );
             pp.get("particle_slice_width_lab",particle_slice_width_lab);
          }
       }

    }
}

// This is a virtual function.
void
WarpX::MakeNewLevelFromScratch (int lev, Real time, const BoxArray& new_grids,
                                const DistributionMapping& new_dmap)
{
    AllocLevelData(lev, new_grids, new_dmap);
    InitLevelData(lev, time);

#ifdef WARPX_USE_PSATD
    if (fft_hybrid_mpi_decomposition){
#ifdef WARPX_USE_PSATD_HYBRID
        AllocLevelDataFFT(lev);
        InitLevelDataFFT(lev, time);
#else
    amrex::Abort("The option `psatd.fft_hybrid_mpi_decomposition` does not work on GPU.");
#endif
    }
#endif
}

void
WarpX::ClearLevel (int lev)
{
    for (int i = 0; i < 3; ++i) {
        Efield_aux[lev][i].reset();
        Bfield_aux[lev][i].reset();

        current_fp[lev][i].reset();
        Efield_fp [lev][i].reset();
        Bfield_fp [lev][i].reset();

        current_store[lev][i].reset();

        current_cp[lev][i].reset();
        Efield_cp [lev][i].reset();
        Bfield_cp [lev][i].reset();

        Efield_cax[lev][i].reset();
        Bfield_cax[lev][i].reset();
        current_buf[lev][i].reset();
    }

    charge_buf[lev].reset();

    current_buffer_masks[lev].reset();
    gather_buffer_masks[lev].reset();

    F_fp  [lev].reset();
    rho_fp[lev].reset();
    F_cp  [lev].reset();
    rho_cp[lev].reset();

    costs[lev].reset();

#ifdef WARPX_USE_PSATD_HYBRID
    for (int i = 0; i < 3; ++i) {
        Efield_fp_fft[lev][i].reset();
        Bfield_fp_fft[lev][i].reset();
        current_fp_fft[lev][i].reset();

        Efield_cp_fft[lev][i].reset();
        Bfield_cp_fft[lev][i].reset();
        current_cp_fft[lev][i].reset();
    }

    rho_fp_fft[lev].reset();
    rho_cp_fft[lev].reset();

    dataptr_fp_fft[lev].reset();
    dataptr_cp_fft[lev].reset();

    ba_valid_fp_fft[lev] = BoxArray();
    ba_valid_cp_fft[lev] = BoxArray();

    FreeFFT(lev);
#endif
}

void
WarpX::AllocLevelData (int lev, const BoxArray& ba, const DistributionMapping& dm)
{

    bool aux_is_nodal = (field_gathering_algo == GatheringAlgo::MomentumConserving);

    guard_cells.Init(
        do_subcycling,
        WarpX::use_fdtd_nci_corr,
        do_nodal,
        do_moving_window,
        fft_hybrid_mpi_decomposition,
        aux_is_nodal,
        moving_window_dir,
        WarpX::nox,
        nox_fft, noy_fft, noz_fft,
        NCIGodfreyFilter::m_stencil_width,
        maxwell_fdtd_solver_id,
        maxLevel(),
        exchange_all_guard_cells);

    if (mypc->nSpeciesDepositOnMainGrid() && n_current_deposition_buffer == 0) {
        n_current_deposition_buffer = 1;
        // This forces the allocation of buffers and allows the code associated
        // with buffers to run. But the buffer size of `1` is in fact not used,
        // `deposit_on_main_grid` forces all particles (whether or not they
        // are in buffers) to deposition on the main grid.
    }

    if (n_current_deposition_buffer < 0) {
        n_current_deposition_buffer = guard_cells.ng_alloc_J.max();
    }
    if (n_field_gather_buffer < 0) {
        // Field gather buffer should be larger than current deposition buffers
        n_field_gather_buffer = n_current_deposition_buffer + 1;
    }

    AllocLevelMFs(lev, ba, dm, guard_cells.ng_alloc_EB, guard_cells.ng_alloc_J,
                  guard_cells.ng_alloc_Rho, guard_cells.ng_alloc_F,
                  guard_cells.ng_Extra, aux_is_nodal);
}

void
WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm,
                      const IntVect& ngE, const IntVect& ngJ, const IntVect& ngRho,
                      const IntVect& ngF, const IntVect& ngextra, const bool aux_is_nodal)
{

#if defined WARPX_DIM_RZ
    // With RZ multimode, there is a real and imaginary component
    // for each mode, except mode 0 which is purely real
    // Component 0 is mode 0.
    // Odd components are the real parts.
    // Even components are the imaginary parts.
    ncomps = n_rz_azimuthal_modes*2 - 1;
#endif

    //
    // The fine patch
    //
    Bfield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,ncomps,ngE+ngextra));
    Bfield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,ncomps,ngE+ngextra));
    Bfield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,ncomps,ngE+ngextra));

    Efield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,ncomps,ngE+ngextra));
    Efield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,ncomps,ngE+ngextra));
    Efield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,ncomps,ngE+ngextra));

    current_fp[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,ncomps,ngJ));
    current_fp[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,ncomps,ngJ));
    current_fp[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,ncomps,ngJ));

    if (do_dive_cleaning || plot_rho)
    {
        rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
    }

    if (do_subcycling == 1 && lev == 0)
    {
        current_store[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,ncomps,ngJ));
        current_store[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,ncomps,ngJ));
        current_store[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,ncomps,ngJ));
    }

    if (do_dive_cleaning)
    {
        F_fp[lev].reset  (new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,ncomps, ngF.max()));
    }
#ifdef WARPX_USE_PSATD
    else
    {
        rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
    }
    if (fft_hybrid_mpi_decomposition == false){
        // Allocate and initialize the spectral solver
        std::array<Real,3> dx = CellSize(lev);
#if (AMREX_SPACEDIM == 3)
        RealVect dx_vect(dx[0], dx[1], dx[2]);
#elif (AMREX_SPACEDIM == 2)
        RealVect dx_vect(dx[0], dx[2]);
#endif
        // Get the cell-centered box, with guard cells
        BoxArray realspace_ba = ba;  // Copy box
        realspace_ba.enclosedCells().grow(ngE); // cell-centered + guard cells
        // Define spectral solver
        spectral_solver_fp[lev].reset( new SpectralSolver( realspace_ba, dm,
            nox_fft, noy_fft, noz_fft, do_nodal, dx_vect, dt[lev] ) );
    }
#endif

    //
    // The Aux patch (i.e., the full solution)
    //
    if (aux_is_nodal and !do_nodal)
    {
        // Create aux multifabs on Nodal Box Array
        BoxArray const nba = amrex::convert(ba,IntVect::TheNodeVector());
        Bfield_aux[lev][0].reset( new MultiFab(nba,dm,ncomps,ngE));
        Bfield_aux[lev][1].reset( new MultiFab(nba,dm,ncomps,ngE));
        Bfield_aux[lev][2].reset( new MultiFab(nba,dm,ncomps,ngE));

        Efield_aux[lev][0].reset( new MultiFab(nba,dm,ncomps,ngE));
        Efield_aux[lev][1].reset( new MultiFab(nba,dm,ncomps,ngE));
        Efield_aux[lev][2].reset( new MultiFab(nba,dm,ncomps,ngE));
    }
    else if (lev == 0)
    {
        for (int idir = 0; idir < 3; ++idir) {
            Efield_aux[lev][idir].reset(new MultiFab(*Efield_fp[lev][idir], amrex::make_alias, 0, ncomps));
            Bfield_aux[lev][idir].reset(new MultiFab(*Bfield_fp[lev][idir], amrex::make_alias, 0, ncomps));
        }
    }
    else
    {
        Bfield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,ncomps,ngE));
        Bfield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,ncomps,ngE));
        Bfield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,ncomps,ngE));

        Efield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,ncomps,ngE));
        Efield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,ncomps,ngE));
        Efield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,ncomps,ngE));
    }

    //
    // The coarse patch
    //
    if (lev > 0)
    {
        BoxArray cba = ba;
        cba.coarsen(refRatio(lev-1));

        // Create the MultiFabs for B
        Bfield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,ncomps,ngE));
        Bfield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,ncomps,ngE));
        Bfield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,ncomps,ngE));

        // Create the MultiFabs for E
        Efield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,ncomps,ngE));
        Efield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,ncomps,ngE));
        Efield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,ncomps,ngE));

        // Create the MultiFabs for the current
        current_cp[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,ncomps,ngJ));
        current_cp[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,ncomps,ngJ));
        current_cp[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,ncomps,ngJ));

        if (do_dive_cleaning || plot_rho){
            rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
        }
        if (do_dive_cleaning)
        {
            F_cp[lev].reset  (new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,ncomps, ngF.max()));
        }
#ifdef WARPX_USE_PSATD
        else
        {
            rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
        }
        if (fft_hybrid_mpi_decomposition == false){
            // Allocate and initialize the spectral solver
            std::array<Real,3> cdx = CellSize(lev-1);
    #if (AMREX_SPACEDIM == 3)
            RealVect cdx_vect(cdx[0], cdx[1], cdx[2]);
    #elif (AMREX_SPACEDIM == 2)
            RealVect cdx_vect(cdx[0], cdx[2]);
    #endif
            // Get the cell-centered box, with guard cells
            BoxArray realspace_ba = cba;// Copy box
            realspace_ba.enclosedCells().grow(ngE);// cell-centered + guard cells
            // Define spectral solver
            spectral_solver_cp[lev].reset( new SpectralSolver( realspace_ba, dm,
                nox_fft, noy_fft, noz_fft, do_nodal, cdx_vect, dt[lev] ) );
        }
#endif
    }

    //
    // Copy of the coarse aux
    //
    if (lev > 0 && (n_field_gather_buffer > 0 || n_current_deposition_buffer > 0 ||
                    mypc->nSpeciesGatherFromMainGrid() > 0))
    {
        BoxArray cba = ba;
        cba.coarsen(refRatio(lev-1));

        if (n_field_gather_buffer > 0 || mypc->nSpeciesGatherFromMainGrid() > 0) {
            if (aux_is_nodal) {
                BoxArray const& cnba = amrex::convert(cba,IntVect::TheNodeVector());
                Bfield_cax[lev][0].reset( new MultiFab(cnba,dm,ncomps,ngE));
                Bfield_cax[lev][1].reset( new MultiFab(cnba,dm,ncomps,ngE));
                Bfield_cax[lev][2].reset( new MultiFab(cnba,dm,ncomps,ngE));
                Efield_cax[lev][0].reset( new MultiFab(cnba,dm,ncomps,ngE));
                Efield_cax[lev][1].reset( new MultiFab(cnba,dm,ncomps,ngE));
                Efield_cax[lev][2].reset( new MultiFab(cnba,dm,ncomps,ngE));
            } else {
                // Create the MultiFabs for B
                Bfield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,ncomps,ngE));
                Bfield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,ncomps,ngE));
                Bfield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,ncomps,ngE));

                // Create the MultiFabs for E
                Efield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,ncomps,ngE));
                Efield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,ncomps,ngE));
                Efield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,ncomps,ngE));
            }

            gather_buffer_masks[lev].reset( new iMultiFab(ba, dm, ncomps, 1) );
            // Gather buffer masks have 1 ghost cell, because of the fact
            // that particles may move by more than one cell when using subcycling.
        }

        if (n_current_deposition_buffer > 0) {
            current_buf[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,ncomps,ngJ));
            current_buf[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,ncomps,ngJ));
            current_buf[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,ncomps,ngJ));
            if (rho_cp[lev]) {
                charge_buf[lev].reset( new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
            }
            current_buffer_masks[lev].reset( new iMultiFab(ba, dm, ncomps, 1) );
            // Current buffer masks have 1 ghost cell, because of the fact
            // that particles may move by more than one cell when using subcycling.
        }
    }

    if (load_balance_int > 0) {
        costs[lev].reset(new MultiFab(ba, dm, 1, 0));
    }
}

std::array<Real,3>
WarpX::CellSize (int lev)
{
    const auto& gm = GetInstance().Geom(lev);
    const Real* dx = gm.CellSize();
#if (AMREX_SPACEDIM == 3)
    return { dx[0], dx[1], dx[2] };
#elif (AMREX_SPACEDIM == 2)
    return { dx[0], 1.0, dx[1] };
#else
    static_assert(AMREX_SPACEDIM != 1, "1D is not supported");
#endif
}

amrex::RealBox
WarpX::getRealBox(const Box& bx, int lev)
{
    const auto& gm = GetInstance().Geom(lev);
    const RealBox grid_box{bx, gm.CellSize(), gm.ProbLo()};
    return( grid_box );
}

std::array<Real,3>
WarpX::LowerCorner(const Box& bx, int lev)
{
    const RealBox grid_box = getRealBox( bx, lev );
    const Real* xyzmin = grid_box.lo();
#if (AMREX_SPACEDIM == 3)
    return { xyzmin[0], xyzmin[1], xyzmin[2] };
#elif (AMREX_SPACEDIM == 2)
    return { xyzmin[0], std::numeric_limits<Real>::lowest(), xyzmin[1] };
#endif
}

std::array<Real,3>
WarpX::UpperCorner(const Box& bx, int lev)
{
    const RealBox grid_box = getRealBox( bx, lev );
    const Real* xyzmax = grid_box.hi();
#if (AMREX_SPACEDIM == 3)
    return { xyzmax[0], xyzmax[1], xyzmax[2] };
#elif (AMREX_SPACEDIM == 2)
    return { xyzmax[0], std::numeric_limits<Real>::max(), xyzmax[1] };
#endif
}

std::array<Real,3>
WarpX::LowerCornerWithCentering(const Box& bx, int lev)
{
    std::array<Real,3> corner = LowerCorner(bx, lev);
    std::array<Real,3> dx = CellSize(lev);
    if (!bx.type(0)) corner[0] += 0.5*dx[0];
#if (AMREX_SPACEDIM == 3)
    if (!bx.type(1)) corner[1] += 0.5*dx[1];
    if (!bx.type(2)) corner[2] += 0.5*dx[2];
#else
    if (!bx.type(1)) corner[2] += 0.5*dx[2];
#endif
    return corner;
}

IntVect
WarpX::RefRatio (int lev)
{
    return GetInstance().refRatio(lev);
}

void
WarpX::Evolve (int numsteps) {
    BL_PROFILE_REGION("WarpX::Evolve()");

#ifdef WARPX_DO_ELECTROSTATIC
    if (do_electrostatic) {
        EvolveES(numsteps);
    } else {
      EvolveEM(numsteps);
    }
#else
    EvolveEM(numsteps);
#endif // WARPX_DO_ELECTROSTATIC
}

void
WarpX::ComputeDivB (amrex::MultiFab& divB, int dcomp,
                    const std::array<const amrex::MultiFab*, 3>& B,
                    const std::array<amrex::Real,3>& dx)
{
    Real dxinv = 1./dx[0], dyinv = 1./dx[1], dzinv = 1./dx[2];

#ifdef WARPX_DIM_RZ
    const Real rmin = GetInstance().Geom(0).ProbLo(0);
#endif

#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
    for (MFIter mfi(divB, TilingIfNotGPU()); mfi.isValid(); ++mfi)
    {
        const Box& bx = mfi.tilebox();
        auto const& Bxfab = B[0]->array(mfi);
        auto const& Byfab = B[1]->array(mfi);
        auto const& Bzfab = B[2]->array(mfi);
        auto const& divBfab = divB.array(mfi);

        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            warpx_computedivb(i, j, k, dcomp, divBfab, Bxfab, Byfab, Bzfab, dxinv, dyinv, dzinv
#ifdef WARPX_DIM_RZ
                              ,rmin
#endif
                              );
        });
    }
}

void
WarpX::ComputeDivB (amrex::MultiFab& divB, int dcomp,
                    const std::array<const amrex::MultiFab*, 3>& B,
                    const std::array<amrex::Real,3>& dx, int ngrow)
{
    Real dxinv = 1./dx[0], dyinv = 1./dx[1], dzinv = 1./dx[2];

#ifdef WARPX_DIM_RZ
    const Real rmin = GetInstance().Geom(0).ProbLo(0);
#endif

#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
    for (MFIter mfi(divB, TilingIfNotGPU()); mfi.isValid(); ++mfi)
    {
        Box bx = mfi.growntilebox(ngrow);
        auto const& Bxfab = B[0]->array(mfi);
        auto const& Byfab = B[1]->array(mfi);
        auto const& Bzfab = B[2]->array(mfi);
        auto const& divBfab = divB.array(mfi);

        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            warpx_computedivb(i, j, k, dcomp, divBfab, Bxfab, Byfab, Bzfab, dxinv, dyinv, dzinv
#ifdef WARPX_DIM_RZ
                              ,rmin
#endif
                              );
        });
    }
}

void
WarpX::ComputeDivE (amrex::MultiFab& divE, int dcomp,
                    const std::array<const amrex::MultiFab*, 3>& E,
                    const std::array<amrex::Real,3>& dx)
{
    Real dxinv = 1./dx[0], dyinv = 1./dx[1], dzinv = 1./dx[2];

#ifdef WARPX_DIM_RZ
    const Real rmin = GetInstance().Geom(0).ProbLo(0);
#endif

#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
    for (MFIter mfi(divE, TilingIfNotGPU()); mfi.isValid(); ++mfi)
    {
        const Box& bx = mfi.tilebox();
        auto const& Exfab = E[0]->array(mfi);
        auto const& Eyfab = E[1]->array(mfi);
        auto const& Ezfab = E[2]->array(mfi);
        auto const& divEfab = divE.array(mfi);

        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            warpx_computedive(i, j, k, dcomp, divEfab, Exfab, Eyfab, Ezfab, dxinv, dyinv, dzinv
#ifdef WARPX_DIM_RZ
                              ,rmin
#endif
                              );
        });
    }
}

void
WarpX::ComputeDivE (amrex::MultiFab& divE, int dcomp,
                    const std::array<const amrex::MultiFab*, 3>& E,
                    const std::array<amrex::Real,3>& dx, int ngrow)
{
    Real dxinv = 1./dx[0], dyinv = 1./dx[1], dzinv = 1./dx[2];

#ifdef WARPX_DIM_RZ
    const Real rmin = GetInstance().Geom(0).ProbLo(0);
#endif

#ifdef _OPENMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
    for (MFIter mfi(divE, TilingIfNotGPU()); mfi.isValid(); ++mfi)
    {
        Box bx = mfi.growntilebox(ngrow);
        auto const& Exfab = E[0]->array(mfi);
        auto const& Eyfab = E[1]->array(mfi);
        auto const& Ezfab = E[2]->array(mfi);
        auto const& divEfab = divE.array(mfi);

        ParallelFor(bx,
        [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
        {
            warpx_computedive(i, j, k, dcomp, divEfab, Exfab, Eyfab, Ezfab, dxinv, dyinv, dzinv
#ifdef WARPX_DIM_RZ
                              ,rmin
#endif
                              );
        });
    }
}

PML*
WarpX::GetPML (int lev)
{
    if (do_pml) {
        // This should check if pml was initialized
        return pml[lev].get();
    } else {
        return nullptr;
    }
}

std::vector< bool >
WarpX::getPMLdirections() const
{
    std::vector< bool > dirsWithPML( 6, false );
#if AMREX_SPACEDIM!=3
    dirsWithPML.resize( 4 );
#endif
    if( do_pml )
    {
        for( auto i = 0u; i < dirsWithPML.size() / 2u; ++i )
        {
            dirsWithPML.at( 2u*i      ) = bool(do_pml_Lo[i]);
            dirsWithPML.at( 2u*i + 1u ) = bool(do_pml_Hi[i]);
        }
    }
    return dirsWithPML;
}

void
WarpX::BuildBufferMasks ()
{
    for (int lev = 1; lev <= maxLevel(); ++lev)
    {
        for (int ipass = 0; ipass < 2; ++ipass)
        {
            int ngbuffer = (ipass == 0) ? n_current_deposition_buffer : n_field_gather_buffer;
            iMultiFab* bmasks = (ipass == 0) ? current_buffer_masks[lev].get() : gather_buffer_masks[lev].get();
            if (bmasks)
            {
                const int ngtmp = ngbuffer + bmasks->nGrow();
                iMultiFab tmp(bmasks->boxArray(), bmasks->DistributionMap(), 1, ngtmp);
                const int covered = 1;
                const int notcovered = 0;
                const int physbnd = 1;
                const int interior = 1;
                const Box& dom = Geom(lev).Domain();
                const auto& period = Geom(lev).periodicity();
                tmp.BuildMask(dom, period, covered, notcovered, physbnd, interior);
#ifdef _OPENMP
#pragma omp parallel
#endif
                for (MFIter mfi(*bmasks, true); mfi.isValid(); ++mfi)
                {
                    const Box& tbx = mfi.growntilebox();
                    warpx_build_buffer_masks (BL_TO_FORTRAN_BOX(tbx),
                                              BL_TO_FORTRAN_ANYD((*bmasks)[mfi]),
                                              BL_TO_FORTRAN_ANYD(tmp[mfi]),
                                              &ngbuffer);
                }
            }
        }
    }
}

const iMultiFab*
WarpX::CurrentBufferMasks (int lev)
{
    return GetInstance().getCurrentBufferMasks(lev);
}

const iMultiFab*
WarpX::GatherBufferMasks (int lev)
{
    return GetInstance().getGatherBufferMasks(lev);
}

void
WarpX::StoreCurrent (int lev)
{
    for (int idim = 0; idim < 3; ++idim) {
        if (current_store[lev][idim]) {
            MultiFab::Copy(*current_store[lev][idim], *current_fp[lev][idim],
                           0, 0, 1, current_store[lev][idim]->nGrowVect());
        }
    }
}

void
WarpX::RestoreCurrent (int lev)
{
    for (int idim = 0; idim < 3; ++idim) {
        if (current_store[lev][idim]) {
            std::swap(current_fp[lev][idim], current_store[lev][idim]);
        }
    }
}

std::string
WarpX::Version ()
{
#ifdef WARPX_GIT_VERSION
    return std::string(WARPX_GIT_VERSION);
#else
    return std::string("Unknown");
#endif
}

std::string
WarpX::PicsarVersion ()
{
#ifdef PICSAR_GIT_VERSION
    return std::string(PICSAR_GIT_VERSION);
#else
    return std::string("Unknown");
#endif
}