1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
"""
Python script to compute the minimum number of guard cells for a given
error threshold, based on the measurement of the PSATD stencil extent
(that is, the minimum number of guard cells such that the stencil
measure is not larger than the error threshold).
Reference: https://doi.org/10.1016/j.cpc.2022.108457
Run the script simply with "python stencil.py" (or with "run stencil.py"
using IPython). The user can modify the input parameters set in the main
function at the end of the file.
"""
import os
import matplotlib.pyplot as plt
import numpy as np
from scipy.constants import c
plt.style.use('tableau-colorblind10')
plt.rcParams.update({'font.size': 14})
sp = np.finfo(np.float32).eps
dp = np.finfo(np.float64).eps
def get_Fornberg_coeffs(order, staggered):
"""
Compute the centered or staggered Fornberg coefficients at finite order.
Parameters
----------
order : int
Finite order of the approximation.
staggered : bool
Whether to compute the centered or staggered Fornberg coefficients.
Returns
-------
coeffs : numpy.ndarray
Array of centered or staggered Fornberg coefficients.
"""
m = order//2
coeffs = np.zeros(m+1)
# Compute Fornberg coefficients by recurrence
if staggered:
prod = 1.
for k in range(1, m+1):
prod = prod*(m+k)/(4*k)
coeffs[0] = 4*m*prod**2
for n in range(1, m+1):
coeffs[n] = -(((2*n-3)*(m+1-n))/((2*n-1)*(m-1+n))*coeffs[n-1])
else:
coeffs[0] = -2.
for n in range(1, m+1):
coeffs[n] = -(m+1-n)/(m+n)*coeffs[n-1]
return coeffs
def modified_k(kx, dx, order, staggered):
"""
Compute the centered or staggered modified wave vector at finite order.
Parameters
----------
kx : numpy.ndarray
Standard wave vector.
dx : float
Cell size in real space.
order : int
Finite order of the approximation.
staggered : bool
Whether to compute the centered or staggered modified wave vector.
Returns
-------
k_mod : numpy.ndarray
Centered or staggered modified wave vector.
"""
m = order//2
coeffs = get_Fornberg_coeffs(order, staggered)
# Array of values for n: from 1 to m
n = np.arange(1, m+1)
# Array of values of sin
# (first axis corresponds to k and second axis to n)
if staggered:
sin_kn = (np.sin(kx[:,np.newaxis]*(n[np.newaxis,:]-0.5)*dx)/((n[np.newaxis,:]-0.5)*dx))
else:
sin_kn = (np.sin(kx[:,np.newaxis]*n[np.newaxis,:]*dx)/(n[np.newaxis,:]*dx))
# Modified k
k_mod = np.tensordot(sin_kn, coeffs[1:], axes=(-1,-1))
return k_mod
def func_cosine(om, w_c, dt):
"""
Compute the leading spectral coefficient of the general PSATD equations:
theta_c**2*cos(om*dt), where theta_c = exp(i*w_c*dt/2), w_c = v_gal*[kz]_c,
om_s = c*|[k]| (and [k] or [kz] denote the centered or staggered modified
wave vector or vector component).
Parameters
----------
om : numpy.ndarray
Array of centered or staggered modified frequencies.
w_c : numpy.ndarray
Array of values of v_gal*[kz]_c.
dt : float
Time step.
Returns
-------
coeff : numpy.ndarray
Leading spectral coefficient of the general PSATD equations.
"""
theta_c = np.exp(1.j*w_c*dt*0.5)
coeff = theta_c**2*np.cos(om*dt)
return coeff
def compute_stencils(coeff_nodal, coeff_stagg, axis):
"""
Compute nodal and staggered stencils along a given direction.
Parameters
----------
coeff_nodal : numpy.ndarray
Leading spectral nodal coefficient of the general PSATD equations.
coeff_stagg : numpy.ndarray
Leading spectral staggered coefficient of the general PSATD equations.
axis : int
Axis or direction (must be 0, 1, or 2).
Returns
-------
(stencil_avg_nodal, stencil_avg_stagg) : tuple
Nodal and staggered stencils along a given direction.
"""
# Inverse FFTs of the spectral coefficient along the chosen axis
stencil_nodal = np.fft.ifft(coeff_nodal, axis=axis)
stencil_stagg = np.fft.ifft(coeff_stagg, axis=axis)
# Average results over remaining axes in spectral space
if axis == 0:
# Averaged over ky and kz
stencil_avg_nodal = np.sum(np.sum(stencil_nodal, axis=2), axis=1)
stencil_avg_nodal /= (stencil_nodal.shape[2]*stencil_nodal.shape[1])
stencil_avg_stagg = np.sum(np.sum(stencil_stagg, axis=2), axis=1)
stencil_avg_stagg /= (stencil_stagg.shape[2]*stencil_stagg.shape[1])
elif axis == 1:
# Averaged over kx and kz
stencil_avg_nodal = np.sum(np.sum(stencil_nodal, axis=2), axis=0)
stencil_avg_nodal /= (stencil_nodal.shape[2]*stencil_nodal.shape[0])
stencil_avg_stagg = np.sum(np.sum(stencil_stagg, axis=2), axis=0)
stencil_avg_stagg /= (stencil_stagg.shape[2]*stencil_stagg.shape[0])
elif axis == 2:
# Averaged over kx and ky
stencil_avg_nodal = np.sum(np.sum(stencil_nodal, axis=1), axis=0)
stencil_avg_nodal /= (stencil_nodal.shape[1]*stencil_nodal.shape[0])
stencil_avg_stagg = np.sum(np.sum(stencil_stagg, axis=1), axis=0)
stencil_avg_stagg /= (stencil_stagg.shape[1]*stencil_stagg.shape[0])
stencils = dict()
stencils['nodal'] = abs(stencil_avg_nodal)
stencils['stagg'] = abs(stencil_avg_stagg)
return stencils
def compute_all(dx, dy, dz, dt, nox, noy, noz, v_gal, nx=256, ny=256, nz=256):
"""
Compute nodal and staggered stencils along all directions.
Parameters
----------
dx : float
Cell size along x.
dy : float
Cell size along y.
dz : float
Cell size along z.
dt : float
Time step.
nox : int
Spectral order along x.
noy : int
Spectral order along y.
noz : int
Spectral order along z.
v_gal : float
Galilean velocity.
nx : int, optional (default = 256)
Number of mesh points along x.
ny : int, optional (default = 256)
Number of mesh points along y.
nz : int, optional (default = 256)
Number of mesh points along z.
Returns
-------
(stencil_nodal, stencil_stagg) : tuple
Nodal and staggered stencils along all directions.
"""
# k vectors
kx_arr = 2*np.pi*np.fft.fftfreq(nx, dx)
ky_arr = 2*np.pi*np.fft.fftfreq(ny, dy)
kz_arr = 2*np.pi*np.fft.fftfreq(nz, dz)
# Centered modified k vectors
kx_arr_c = modified_k(kx_arr, dx, nox, False) if nox != 'inf' else kx_arr
ky_arr_c = modified_k(ky_arr, dy, noy, False) if noy != 'inf' else ky_arr
kz_arr_c = modified_k(kz_arr, dz, noz, False) if noz != 'inf' else kz_arr
# Staggered modified k vectors
kx_arr_s = modified_k(kx_arr, dx, nox, True) if nox != 'inf' else kx_arr
ky_arr_s = modified_k(ky_arr, dy, noy, True) if noy != 'inf' else ky_arr
kz_arr_s = modified_k(kz_arr, dz, noz, True) if noz != 'inf' else kz_arr
# Mesh in k space
kx_c, ky_c, kz_c = np.meshgrid(kx_arr_c, ky_arr_c, kz_arr_c)
kx_s, ky_s, kz_s = np.meshgrid(kx_arr_s, ky_arr_s, kz_arr_s)
# Frequencies
kk_c = np.sqrt(kx_c**2+ky_c**2+kz_c**2)
kk_s = np.sqrt(kx_s**2+ky_s**2+kz_s**2)
om_c = c*kk_c
om_s = c*kk_s
w_c = v_gal*kz_c
# Spectral coefficient
coeff_nodal = func_cosine(om_c, w_c, dt)
coeff_stagg = func_cosine(om_s, w_c, dt)
# Stencils
stencils = dict()
stencils['x'] = compute_stencils(coeff_nodal, coeff_stagg, axis=0)
stencils['y'] = compute_stencils(coeff_nodal, coeff_stagg, axis=1)
stencils['z'] = compute_stencils(coeff_nodal, coeff_stagg, axis=2)
return stencils
def compute_guard_cells(errmin, errmax, stencil):
"""
Compute the minimum number of guard cells for a given error threshold
(number of guard cells such that the stencil measure is not larger
than the error threshold).
Parameters
----------
error : float
Error threshold.
stencil : numpy.ndarray
Stencil array.
Returns
-------
guard_cells : numpy.int64
Number of cells.
"""
diff = stencil - errmin
v = next(d for d in diff if d < 0)
gcmin = np.argwhere(diff == v)[0,0]
diff = stencil - errmax
try:
v = next(d for d in diff if d < 0)
gcmax = np.argwhere(diff == v)[0,0] - 1
except StopIteration:
gcmin, gcmax = compute_guard_cells(errmin, errmax*10, stencil)
return (gcmin, gcmax)
def plot_stencil(cells, stencil_nodal, stencil_stagg, label, path, name):
"""
Plot stencil extent for nodal and staggered/hybrid solver,
as a function of the number of cells.
Parameters
----------
cells : numpy.ndarray
Array of cell numbers.
stencil_nodal : numpy.ndarray
Stencil array for the nodal solver.
stencil_stagg : numpy.ndarray
Stencil array for the staggered or hybrid solver.
label : str
Label for plot annotations.
name : str
Label for figure name.
"""
fig = plt.figure(figsize=[10,6])
ax = fig.add_subplot(111)
ax.plot(cells, stencil_nodal, linestyle='-', label='nodal')
ax.plot(cells, stencil_stagg, linestyle='-', label='staggered or hybrid')
# Plot single and double precision machine epsilons
ax.axhline(y=sp, c='grey', ls='dashed', label='machine epsilon (single precision)')
ax.axhline(y=dp, c='grey', ls='dotted', label='machine epsilon (double precision)')
# Shade regions between single and double precision machine epsilons
xmin, xmax = compute_guard_cells(sp, dp, stencil_nodal)
ax.fill_between(cells[xmin:xmax+1], stencil_nodal[xmin:xmax+1], alpha=0.5)
xmin, xmax = compute_guard_cells(sp, dp, stencil_stagg)
ax.fill_between(cells[xmin:xmax+1], stencil_stagg[xmin:xmax+1], alpha=0.5)
#
ax.set_yscale('log')
ax.set_xticks(cells, minor=True)
ax.grid(which='minor', linewidth=0.2)
ax.grid(which='major', linewidth=0.4)
ax.legend()
ax.set_xlabel('number of cells')
ax.set_ylabel('signal to be truncated')
ax.set_title(r'Stencil extent along ${:s}$'.format(label))
fig.tight_layout()
fig_name = os.path.join(path, 'figure_stencil_' + label)
if name:
fig_name += '_' + name
fig.savefig(fig_name + '.png', dpi=150)
def run_main(dx, dy, dz, dt, nox, noy, noz, gamma=1., galilean=False, path='.', name=''):
"""
Main function.
Parameters
----------
dx : float
Cell size along x.
dy : float
Cell size along y.
dz : float
Cell size along z.
dt : float
Time step.
nox : int
Spectral order along x.
noy : int
Spectral order along y.
noz : int
Spectral order along z.
gamma : float, optional (default = 1.)
Lorentz factor.
galilean : bool, optional (default = False)
Galilean scheme.
path : str, optional (default = '.')
Path where figures are saved.
name : str, optional (default = '')
Common label for figure names.
"""
# Galilean velocity (default = 0.)
v_gal = 0.
if galilean:
v_gal = -np.sqrt(1.-1./gamma**2)*c
# Display some output
print('\nCell size:')
print('- dx = {:g}'.format(dx))
print('- dy = {:g}'.format(dy))
print('- dz = {:g}'.format(dz))
print('- dz/dx = {:g}'.format(dz/dx))
print('- dz/dy = {:g}'.format(dz/dy))
print('\nTime step:')
print('- dt = {:g}'.format(dt))
print('- c*dt/dx = {:g}'.format(c*dt/dx))
print('- c*dt/dy = {:g}'.format(c*dt/dy))
print('- c*dt/dz = {:g}'.format(c*dt/dz))
print('\nSpectral order:')
print('- nox = {:d}'.format(nox))
print('- noy = {:d}'.format(noy))
print('- noz = {:d}'.format(noz))
print('\nLorentz boost, Galilean velocity:')
print('- gamma = {:g}'.format(gamma))
print('- v_gal = {:g}'.format(v_gal))
stencils = compute_all(dx, dy, dz, dt, nox, noy, noz, v_gal)
# Maximum number of cells
ncx = 65
ncy = 65
ncz = 65
# Array of cell numbers
cx = np.arange(ncx)
cy = np.arange(ncy)
cz = np.arange(ncz)
# Arrays of stencils
stencils['x']['nodal'] = stencils['x']['nodal'][:ncx]
stencils['x']['stagg'] = stencils['x']['stagg'][:ncx]
stencils['y']['nodal'] = stencils['y']['nodal'][:ncy]
stencils['y']['stagg'] = stencils['y']['stagg'][:ncy]
stencils['z']['nodal'] = stencils['z']['nodal'][:ncz]
stencils['z']['stagg'] = stencils['z']['stagg'][:ncz]
# Compute minimum number of guard cells for given error threshold
# (number of guard cells such that the stencil measure
# is not larger than the error threshold)
# Plot stencils
plot_stencil(cx, stencils['x']['nodal'], stencils['x']['stagg'], 'x', path, name)
plot_stencil(cy, stencils['y']['nodal'], stencils['y']['stagg'], 'y', path, name)
plot_stencil(cz, stencils['z']['nodal'], stencils['z']['stagg'], 'z', path, name)
# Compute min and max numbers of guard cells
gcmin_x_nodal, gcmax_x_nodal = compute_guard_cells(sp, dp, stencils['x']['nodal'])
gcmin_y_nodal, gcmax_y_nodal = compute_guard_cells(sp, dp, stencils['y']['nodal'])
gcmin_z_nodal, gcmax_z_nodal = compute_guard_cells(sp, dp, stencils['z']['nodal'])
#
gcmin_x_stagg, gcmax_x_stagg = compute_guard_cells(sp, dp, stencils['x']['stagg'])
gcmin_y_stagg, gcmax_y_stagg = compute_guard_cells(sp, dp, stencils['y']['stagg'])
gcmin_z_stagg, gcmax_z_stagg = compute_guard_cells(sp, dp, stencils['z']['stagg'])
fig_path = os.path.abspath(path)
print(f'\nFigures saved in {fig_path}/.')
print('\nThe plots show the extent of the signal to be truncated (y-axis)'
+ '\nby choosing a given number of cells (x-axis) for the ghost regions'
+ '\nof each simulation grid, along x, y, and z.')
print('\nIt is recommended to choose a number of ghost cells that corresponds to'
+ '\na truncation of the signal between single and double machine precision.'
+ '\nThe more ghost cells, the more accurate, yet expensive, results.'
+ '\nFor each stencil the region of accuracy between single and double precision'
+ '\nis shaded to help you identify a suitable number of ghost cells.')
print('\nFor a nodal simulation, choose:')
print(f'- between {gcmin_x_nodal} and {gcmax_x_nodal} ghost cells along x')
print(f'- between {gcmin_y_nodal} and {gcmax_y_nodal} ghost cells along y')
print(f'- between {gcmin_z_nodal} and {gcmax_z_nodal} ghost cells along z')
print('\nFor a staggered or hybrid simulation, choose:')
print(f'- between {gcmin_x_stagg} and {gcmax_x_stagg} ghost cells along x')
print(f'- between {gcmin_y_stagg} and {gcmax_y_stagg} ghost cells along y')
print(f'- between {gcmin_z_stagg} and {gcmax_z_stagg} ghost cells along z')
print()
return
if __name__ == '__main__':
# --
# User can modify these input parameters
# --
# Cell size
dx = 1e-06
dy = 1e-06
dz = 2e-06
# Time step
dt = 1e-14
# Spectral order
nox = 8
noy = 8
noz = 16
# Lorentz boost
gamma = 30.
# Galilean flag
galilean = True
# Output path
path = '.'
# Output name tag (can be empty: '')
name = 'test'
# --
# Run main function (some arguments are optional,
# see definition of run_main function for help)
run_main(dx, dy, dz, dt, nox, noy, noz, gamma, galilean, path, name)
|