1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
# Copyright 2019 Andrew Myers, Jean-Luc Vay, Maxence Thevenet
# Remi Lehe, Weiqun Zhang
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
import numpy as np
class AMReXParticleHeader(object):
'''
This class is designed to parse and store the information
contained in an AMReX particle header file.
Usage:
header = AMReXParticleHeader("plt00000/particle0/Header")
print(header.num_particles)
print(header.version_string)
etc...
'''
def __init__(self, header_filename):
self.real_component_names = []
self.int_component_names = []
with open(header_filename, "r") as f:
self.version_string = f.readline().strip()
particle_real_type = self.version_string.split('_')[-1]
if particle_real_type == 'double':
self.real_type = np.float64
elif particle_real_type == 'single':
self.real_type = np.float32
else:
raise RuntimeError("Did not recognize particle real type.")
self.int_type = np.int32
self.dim = int(f.readline().strip())
self.num_int_base = 2
self.num_real_base = self.dim
self.num_real_extra = int(f.readline().strip())
for i in range(self.num_real_extra):
self.real_component_names.append(f.readline().strip())
self.num_int_extra = int(f.readline().strip())
for i in range(self.num_int_extra):
self.int_component_names.append(f.readline().strip())
self.num_int = self.num_int_base + self.num_int_extra
self.num_real = self.num_real_base + self.num_real_extra
self.is_checkpoint = bool(int(f.readline().strip()))
self.num_particles = int(f.readline().strip())
self.max_next_id = int(f.readline().strip())
self.finest_level = int(f.readline().strip())
self.num_levels = self.finest_level + 1
if not self.is_checkpoint:
self.num_int_base = 0
self.num_int_extra = 0
self.num_int = 0
self.grids_per_level = np.zeros(self.num_levels, dtype='int64')
self.grids = []
for level_num in range(self.num_levels):
self.grids_per_level[level_num] = int(f.readline().strip())
self.grids.append([])
for level_num in range(self.num_levels):
for grid_num in range(self.grids_per_level[level_num]):
entry = [int(val) for val in f.readline().strip().split()]
self.grids[level_num].append(tuple(entry))
def read_particle_data(fn, ptype="particle0"):
'''
This function returns the particle data stored in a particular
plot file and particle type. It returns two numpy arrays, the
first containing the particle integer data, and the second the
particle real data. For example, if a dataset has 3000 particles,
which have two integer and five real components, this function will
return two numpy arrays, one with the shape (3000, 2) and the other
with the shape (3000, 5).
Usage:
idata, rdata = read_particle_data("plt00000", "particle0")
'''
base_fn = fn + "/" + ptype
header = AMReXParticleHeader(base_fn + "/Header")
idtype = "(%d,)i4" % header.num_int
if header.real_type == np.float64:
fdtype = "(%d,)f8" % header.num_real
elif header.real_type == np.float32:
fdtype = "(%d,)f4" % header.num_real
idata = np.empty((header.num_particles, header.num_int ))
rdata = np.empty((header.num_particles, header.num_real))
ip = 0
for lvl, level_grids in enumerate(header.grids):
for (which, count, where) in level_grids:
if count == 0: continue
fn = base_fn + "/Level_%d/DATA_%04d" % (lvl, which)
with open(fn, 'rb') as f:
f.seek(where)
ints = np.fromfile(f, dtype = idtype, count=count)
floats = np.fromfile(f, dtype = fdtype, count=count)
idata[ip:ip+count] = ints
rdata[ip:ip+count] = floats
ip += count
return idata, rdata
if __name__ == "__main__":
import glob
import pylab as plt
x0 = []
y0 = []
x1 = []
y1 = []
fn_list = glob.glob("plt?????")
fn_list.sort()
for fn in fn_list:
idata, rdata = read_particle_data(fn, ptype="particle0")
x0.append(rdata[0][0])
y0.append(rdata[0][1])
idata, rdata = read_particle_data(fn, ptype="particle1")
x1.append(rdata[0][0])
y1.append(rdata[0][1])
fig = plt.gcf()
fig.set_size_inches(8, 8)
plt.plot(x0, y0, 'r.')
plt.plot(x1, y1, 'b.')
plt.axis((-2., 2., -2., 2.))
ax = plt.gca()
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$y$')
plt.savefig('particles.png')
|