1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
# Copyright 2018-2019 Maxence Thevenet
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
'''
This script loops over 3D plotfiles plt*****, generates a 3D rendering
of the data with fields and particles, and saves one image per plotfile to
img_*****.png. It was written for a beam-driven wakefield acceleration
simulation, and contains a lot of custom values (for transparency,
color intensity etc.), so feel free to modify it to meet your needs.
Execute the file with e.g.
> mpirun -np 12 python yt3d_mpi.py
to generate the images. It can be quite slow for even moderately large
plotfiles.
'''
import glob
from mpi4py import MPI
import numpy as np
import scipy.constants as scc
import yt
yt.funcs.mylog.setLevel(50)
# my_max = 1.e11 # for smooth rendering
my_max = 5.e10 # for layered rendering
species_to_plot = ['plasma_e', 'beam', 'driver']
# For each species, provide [red, green, blue, alpha] between 0. and 1.
species_colors = { 'plasma_e': [1., 1., 1., .15],
'beam' : [1., 1., 1., .2 ],
'driver' : [1., 1., 1., .2 ] }
# provide these to avoid jitter when using a moving window
use_moving_window = True
plot_mr_patch = False
rendering_type = 'layers' # 'layers' or 'smooth'
maxwell_solver = 'ckc' # 'ckc' or 'yee'
cfl = 0.99
file_list = glob.glob('plotfiles/plt?????')
bounds = ( -my_max, my_max )
z_shift = 0.
w = (.01*my_max)**2
def jitter_shift(ds, ad, cfl, iteration):
if maxwell_solver == 'yee':
dt = 1./scc.c * 1./np.sqrt((1./ad['dx'][-1]**2 + 1./ad['dy'][-1]**2 + 1./ad['dz'][-1]**2))
elif maxwell_solver == 'ckc':
dt = cfl * min( [ ad['dx'][-1], ad['dy'][-1], ad['dz'][-1] ] ) / scc.c
z_front = dt * float(iteration) * scc.c + 7.5e-6*yt.units.meter
z_shift = z_front-ds.domain_right_edge[2]
return z_shift
def get_species_ytpoints(ad, species, color_vec):
xp = ad[species,'particle_position_x'].v
yp = ad[species,'particle_position_y'].v
zp = ad[species,'particle_position_z'].v
if species == 'plasma_e':
selection = np.abs(xp)<2.e-6
zp = zp[selection]
yp = yp[selection]
xp = xp[selection]
vertices = np.column_stack((xp,yp,zp))
colors = np.tile(color_vec,(vertices.shape[0], 1))
points = yt.visualization.volume_rendering.render_source.PointSource(vertices, colors=colors, radii=1)
return points
def img_onestep(filename):
ds = yt.load( filename )
ad = ds.all_data()
iteration=int(filename[-5:])
sc = yt.create_scene(ds, field='Ez')
if use_moving_window:
z_shift = jitter_shift( ds, ad, cfl, iteration )
array_shift = z_shift * np.array([0., 0., 1.])
if plot_mr_patch:
box_patch = yt.visualization.volume_rendering.render_source.BoxSource(
left_edge =ds.index.grids[1].LeftEdge +array_shift,
right_edge=ds.index.grids[1].RightEdge+array_shift,
color=[1.,0.1,0.1,.01] )
sc.add_source(box_patch)
########################
### volume rendering ###
########################
source = sc[0]
source.use_ghost_zones = True
source.grey_opacity = True
source.set_log(False)
tf = yt.ColorTransferFunction(bounds)
if rendering_type == 'smooth':
tf.add_gaussian(-my_max/4, width=15**2*w, height=[0.0, 0.0, 1.0, 1])
tf.add_gaussian( my_max/4, width=15**2*w, height=[1.0, 0.0, 0.0, 1])
if rendering_type == 'layers':
# NEGATIVE
tf.add_gaussian(-.04 *my_max, width=8*w, height=[0.1, 0.1, 1.0, 0.2])
tf.add_gaussian(-.2 *my_max, width=5*w, height=[0.1, 0.1, 1.0, 0.5])
tf.add_gaussian(-.6 *my_max, width=w, height=[0.0, 0.0, 1.0, 1.])
# POSITIVE
tf.add_gaussian(.04 *my_max, width=8*w, height=[1.0, 1.0, 0.2, 0.2])
tf.add_gaussian(.2 *my_max, width=5*w, height=[1.0, 1.0, 0.2, 0.5])
tf.add_gaussian(.6 *my_max, width=w, height=[1.0, 1.0, 0.0, 1.])
######################
### plot particles ###
######################
species_points = {}
for species in species_to_plot:
species_points[ species ] = get_species_ytpoints(ad,
species, species_colors[species])
sc.add_source( species_points[ species ] )
source.tfh.tf = tf
source.tfh.bounds = bounds
#########################
### camera properties ###
#########################
cam = sc.camera
cam.resolution = (2048, 2048)
cam.width = .00018*yt.units.meter
cam.focus = ds.domain_center + \
np.array([0., 0., 10.e-6 ])*yt.units.meter + \
array_shift
cam.position = ds.domain_center + \
np.array([15., 15., -5. ])*yt.units.micrometer + \
array_shift
cam.normal_vector = [-0.3, -0.3, -.2]
cam.switch_orientation()
# save image
if rendering_type == 'smooth':
sc.save('img_' + str(my_number_list[count]).zfill(5), sigma_clip=5.)
if rendering_type == 'layers':
sc.save('img_' + str(my_number_list[count]).zfill(5), sigma_clip=2.)
file_list.sort()
# Total number of files
nfiles = len(file_list)
# Each file has a unique number
number_list = range(nfiles)
comm_world = MPI.COMM_WORLD
me = comm_world.Get_rank()
nrank = comm_world.Get_size()
# List of files to process for current proc
my_list = file_list[ (me*nfiles)/nrank : ((me+1)*nfiles)/nrank ]
# List if file numbers for current proc
my_number_list = number_list[ (me*nfiles)/nrank : ((me+1)*nfiles)/nrank ]
for count, filename in enumerate(my_list):
print('processing ' + filename)
img_onestep(filename)
|