aboutsummaryrefslogtreecommitdiff
path: root/Tools/machines/desktop/spack-ubuntu-openmp.yaml
blob: b658f1e009da1b157eaadcf886b6caad3304fd75 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# This is a Spack environment file.
#
# This environment can be used to install all dependencies to build the manual
# locally.
#
# Activating and installing this environment will provide all dependencies
# that are needed for full-feature development.
#   https://spack.readthedocs.io/en/latest/environments.html
#
# Inside the directory of this file
#   spack env create warpx-openmp-dev spack-ubuntu-openmp.yaml
#   spack env activate warpx-openmp-dev
#   spack install  # only needed the first time
#
spack:
  specs:
  - adios2
  - blaspp ~cuda +openmp ~rocm
  - boost
  - ccache
  - cmake
  - ecp-data-vis-sdk +adios2 +ascent +hdf5 +sensei
  - fftw
  - hdf5
  - lapackpp ~cuda ~rocm ^blaspp ~cuda +openmp ~rocm
  - mpi
  - pkgconfig
  - python
  - py-cython
  - py-h5py
  - py-libensemble +nlopt
  - py-mpi4py
  - py-numpy
  - py-pip
  - py-setuptools
  - py-wheel
# skipped to save time: 3D post-processing
#  - paraview +adios2 +python3 +qt
# skipped to save time, because they are faster installed via pip afterwards
# python3 -m pip install jupyter matplotlib numpy openpmd-api openpmd-viewer pandas scipy yt
#  - py-jupyter
#  - py-matplotlib +animation +fonts +latex +movies
#  - openpmd-api +python
#  - py-openpmd-viewer +numba +jupyter
#  - py-pandas
#  - py-pyqt5
#  - py-scipy
#  - py-yt

  packages:
    all:
      variants: +mpi ~fortran ~cuda ~rocm
    # default blocks at HDF5 1.8, resulting in unmergable solution
    conduit:
      variants: ~hdf5_compat

  compilers:
  # Ubuntu
  - compiler:
      spec: gcc@11.2.0
      paths:
        cc: /usr/bin/gcc
        cxx: /usr/bin/g++
        f77: /usr/bin/gfortran
        fc: /usr/bin/gfortran
      flags: {}
      operating_system: ubuntu22.04
      target: x86_64
      modules: []
      environment: {}
      extra_rpaths: []
  - compiler:
      spec: gcc@9.4.0
      paths:
        cc: /usr/bin/gcc
        cxx: /usr/bin/g++
        f77: /usr/bin/gfortran
        fc: /usr/bin/gfortran
      flags: {}
      operating_system: ubuntu20.04
      target: x86_64
      modules: []
      environment: {}
      extra_rpaths: []
  # Debian
  - compiler:
      spec: gcc@12.2.0
      paths:
        cc: /usr/bin/gcc
        cxx: /usr/bin/g++
        f77: /usr/bin/gfortran
        fc: /usr/bin/gfortran
      flags: {}
      # unstable/sid
      operating_system: debianunstable
      target: x86_64
      modules: []
      environment: {}
      extra_rpaths: []
  - compiler:
      spec: gcc@10.2.1
      paths:
        cc: /usr/bin/gcc
        cxx: /usr/bin/g++
        f77: /usr/bin/gfortran
        fc: /usr/bin/gfortran
      flags: {}
      operating_system: debian11
      target: x86_64
      modules: []
      environment: {}
      extra_rpaths: []
  - compiler:
      spec: gcc@8.3.0
      paths:
        cc: /usr/bin/gcc
        cxx: /usr/bin/g++
        f77: /usr/bin/gfortran
        fc: /usr/bin/gfortran
      flags: {}
      operating_system: debian10
      target: x86_64
      modules: []
      environment: {}
      extra_rpaths: []

  # binary caches
  mirrors:
    E4S: https://cache.e4s.io
    LLNL: https://mirror.spack.io

  # do not try to reuse existing packages, which can confuse the concretizer
  concretizer:
    reuse: false
    unify: true

  # limit the build parallelism (default: call virtual cores)
#  config:
#    build_jobs: 6