1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
# Import statements
import sys, os
import yt, glob
import numpy as np
clight = 299792458.0
# Create the 3d image for 1 timestep
# filename is the name of the folder (e.g. plt00000)
def img_onestep(filename):
# Load the data
ds = yt.load( filename )
ad = ds.all_data()
# Calculate the z position of the box.
# You can use ds.domain_right_edge[2] instead. However, if a moving window
# was used in the simulation, the rendering shows some jitter.
# This is because a cell is added in z at some iterations but not all.
# These lines calculate this jitter z_shift and remove it from the camera position and focus
iteration=int(filename[-5:])
dt = 1./clight * 1./np.sqrt((1./ad['dx'][-1]**2 + 1./ad['dy'][-1]**2 + 1./ad['dz'][-1]**2))
z_front = dt * float(iteration) * clight
z_shift = z_front-ds.domain_right_edge[2]
# Create a yt source object for the level1 patch
box_patch = yt.visualization.volume_rendering.render_source.BoxSource(
left_edge=ds.index.grids[1].LeftEdge+np.array([0., 0., z_shift])*yt.units.meter,
right_edge=ds.index.grids[1].RightEdge+np.array([0., 0., z_shift])*yt.units.meter,
color=[1.,0.1,0.1,.01])
# Handle 2 populations of particles: beam and plasma electrons
# Color for each of these particles
colors0_vect = [1., 1., 1., .05] # the last value is overwritten later
colors1_vect = [1., 1., 1., .05] # the last value is overwritten later
# particle0: read data and create a yt source object
x0 = ad['particle0','particle_position_x'].v
y0 = ad['particle0','particle_position_y'].v
z0 = ad['particle0','particle_position_z'].v
vertices0 = np.column_stack((x0,y0,z0))
colors0 = np.tile(colors0_vect,(vertices0.shape[0], 1))
colors0[:,3] = .01
point0 = yt.visualization.volume_rendering.render_source.PointSource(vertices0, colors=colors0, radii=2)
# particle1: read data and create a yt source object
x1 = ad['particle1','particle_position_x'].v
y1 = ad['particle1','particle_position_y'].v
z1 = ad['particle1','particle_position_z'].v
# select only some particles
selector = np.abs(x1)<.1e-6
x1 = x1[selector]
y1 = y1[selector]
z1 = z1[selector]
vertices1 = np.column_stack((x1,y1,z1))
colors1 = np.tile(colors1_vect,(vertices1.shape[0], 1))
colors1[:,3] = .002
point1 = yt.visualization.volume_rendering.render_source.PointSource(vertices1, colors=colors1, radii=1)
# Set the field rendering and camera attributes
# Max field in the simulation. This is easy to get from a single image, but
# it must be set by hand for a video
my_max = 500000000000
sc = yt.create_scene(ds, field='Ez')
# Set camera properties
cam = sc.camera
cam.set_width(ds.quan(35, yt.units.micrometer))
cam.position = ds.domain_center + np.array([15., 20., -5.])*yt.units.micrometer + np.array([0., 0., z_shift])*yt.units.meter
cam.focus = ds.domain_center + np.array([0., 0., z_shift])*yt.units.meter
cam.resolution = (2048, 2048)
# Field rendering properties
source = sc[0]
source.set_field('Ez')
source.set_log(False)
source.use_ghost_zones = True
bounds = (-my_max, my_max)
tf = yt.ColorTransferFunction(bounds)
w = (.01*my_max)**2
# Define the transfer function for 3d rendering
# 3 isocontours for negative field values
# The sharpness of the contour is controlled by argument width
tf.add_gaussian(-.04 *my_max, width=8*w, height=[0.1, 0.1, 1.0, 0.02])
tf.add_gaussian(-.2 *my_max, width=5*w, height=[0.1, 0.1, 1.0, 0.05])
tf.add_gaussian(-.6 *my_max, width=w, height=[0.0, 0.0, 1.0, 0.3])
# 3 isocontours for positive field values
tf.add_gaussian(.04 *my_max, width=8*w, height=[1.0, 1.0, 0.2, 0.02])
tf.add_gaussian(.2 *my_max, width=5*w, height=[1.0, 1.0, 0.2, 0.05])
tf.add_gaussian(.6 *my_max, width=w, height=[1.0, 1.0, 0.0, 0.3])
source.tfh.tf = tf
source.tfh.bounds = bounds
source.tfh.set_log(False)
source.tfh.tf.grey_opacity = True
# Plot user-defined sources (here, 2 species for particles and 1 box)
sc.add_source(point0)
sc.add_source(point1)
sc.add_source(box_patch)
# Save file
sc.save(filename + '_quarter.png', sigma_clip=1.)
return 0
# Get plt folders in current folder and loop over them.
file_list = glob.glob('./plt?????')
for filename in file_list:
# disabled test: do not plot image if already exists
# if os.path.isfile(filename + '.png') is False:
print(filename)
img_onestep(filename)
|