aboutsummaryrefslogtreecommitdiff
path: root/src/javascript/jsc/bindings/webcore/CanvasPath.cpp
diff options
context:
space:
mode:
authorGravatar Jarred Sumner <jarred@jarredsumner.com> 2022-04-03 02:42:08 -0700
committerGravatar Jarred Sumner <jarred@jarredsumner.com> 2022-04-03 02:42:08 -0700
commit4a19a3f07f1887903e5638a3be167f0c7b377ba3 (patch)
tree24b5ebd36910d19e690352cf343943e0e6b0459d /src/javascript/jsc/bindings/webcore/CanvasPath.cpp
parente62c7dc9e5709b1ce54838aee30668a4c358a528 (diff)
downloadbun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.tar.gz
bun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.tar.zst
bun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.zip
wip
Diffstat (limited to 'src/javascript/jsc/bindings/webcore/CanvasPath.cpp')
-rw-r--r--src/javascript/jsc/bindings/webcore/CanvasPath.cpp455
1 files changed, 455 insertions, 0 deletions
diff --git a/src/javascript/jsc/bindings/webcore/CanvasPath.cpp b/src/javascript/jsc/bindings/webcore/CanvasPath.cpp
new file mode 100644
index 000000000..acac6f680
--- /dev/null
+++ b/src/javascript/jsc/bindings/webcore/CanvasPath.cpp
@@ -0,0 +1,455 @@
+/*
+ * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
+ * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
+ * Copyright (C) 2007 Alp Toker <alp@atoker.com>
+ * Copyright (C) 2008 Eric Seidel <eric@webkit.org>
+ * Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
+ * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
+ * Copyright (C) 2012 Intel Corporation. All rights reserved.
+ * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
+ * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+ * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
+ * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "CanvasPath.h"
+
+// #include "AffineTransform.h"
+#include "DOMPointInit.h"
+// #include "FloatRect.h"
+// #include "FloatRoundedRect.h"
+// #include "FloatSize.h"
+#include <algorithm>
+#include <wtf/MathExtras.h>
+
+namespace WebCore {
+
+void CanvasPath::closePath()
+{
+ // if (m_path.isEmpty())
+ // return;
+
+ // FloatRect boundRect = m_path.fastBoundingRect();
+ // if (boundRect.width() || boundRect.height())
+ // m_path.closeSubpath();
+}
+
+void CanvasPath::moveTo(float x, float y)
+{
+ // if (!std::isfinite(x) || !std::isfinite(y))
+ // return;
+ // if (!hasInvertibleTransform())
+ // return;
+ // m_path.moveTo(FloatPoint(x, y));
+}
+
+// void CanvasPath::lineTo(FloatPoint point)
+// {
+// // lineTo(point.x(), point.y());
+// }
+
+void CanvasPath::lineTo(float x, float y)
+{
+ // if (!std::isfinite(x) || !std::isfinite(y))
+ // return;
+ // if (!hasInvertibleTransform())
+ // return;
+
+ // FloatPoint p1 = FloatPoint(x, y);
+ // if (!m_path.hasCurrentPoint())
+ // m_path.moveTo(p1);
+ // else if (p1 != m_path.currentPoint())
+ // m_path.addLineTo(p1);
+}
+
+void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y)
+{
+ // if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
+ // return;
+ // if (!hasInvertibleTransform())
+ // return;
+ // if (!m_path.hasCurrentPoint())
+ // m_path.moveTo(FloatPoint(cpx, cpy));
+
+ // FloatPoint p1 = FloatPoint(x, y);
+ // FloatPoint cp = FloatPoint(cpx, cpy);
+ // if (p1 != m_path.currentPoint() || p1 != cp)
+ // m_path.addQuadCurveTo(cp, p1);
+}
+
+void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
+{
+ // if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
+ // return;
+ // if (!hasInvertibleTransform())
+ // return;
+ // if (!m_path.hasCurrentPoint())
+ // m_path.moveTo(FloatPoint(cp1x, cp1y));
+
+ // FloatPoint p1 = FloatPoint(x, y);
+ // FloatPoint cp1 = FloatPoint(cp1x, cp1y);
+ // FloatPoint cp2 = FloatPoint(cp2x, cp2y);
+ // if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
+ // m_path.addBezierCurveTo(cp1, cp2, p1);
+}
+
+ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r)
+{
+ // if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
+ // return {};
+
+ // if (r < 0)
+ // return Exception { IndexSizeError };
+
+ // if (!hasInvertibleTransform())
+ // return {};
+
+ // FloatPoint p1 = FloatPoint(x1, y1);
+ // FloatPoint p2 = FloatPoint(x2, y2);
+
+ // if (!m_path.hasCurrentPoint())
+ // m_path.moveTo(p1);
+ // else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
+ // lineTo(x1, y1);
+ // else
+ // m_path.addArcTo(p1, p2, r);
+
+ // return {};
+}
+
+static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
+{
+ // float newStartAngle = startAngle;
+ // if (newStartAngle < 0)
+ // newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
+ // else
+ // newStartAngle = fmodf(newStartAngle, 2 * piFloat);
+
+ // float delta = newStartAngle - startAngle;
+ // startAngle = newStartAngle;
+ // endAngle = endAngle + delta;
+ // ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat)));
+
+ // if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
+ // endAngle = startAngle - 2 * piFloat;
+ // else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
+ // endAngle = startAngle + 2 * piFloat;
+}
+
+ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise)
+{
+ // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
+ // return {};
+
+ // if (radius < 0)
+ // return Exception { IndexSizeError };
+
+ // if (!hasInvertibleTransform())
+ // return {};
+
+ // normalizeAngles(startAngle, endAngle, anticlockwise);
+
+ // if (!radius || startAngle == endAngle) {
+ // // The arc is empty but we still need to draw the connecting line.
+ // lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
+ // return {};
+ // }
+
+ // m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise);
+ // return {};
+}
+
+ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
+{
+ // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
+ // return {};
+
+ // if (radiusX < 0 || radiusY < 0)
+ // return Exception { IndexSizeError };
+
+ // if (!hasInvertibleTransform())
+ // return {};
+
+ // normalizeAngles(startAngle, endAngle, anticlockwise);
+
+ // if ((!radiusX && !radiusY) || startAngle == endAngle) {
+ // AffineTransform transform;
+ // transform.translate(x, y).rotate(rad2deg(rotation));
+
+ // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
+ // return {};
+ // }
+
+ // if (!radiusX || !radiusY) {
+ // AffineTransform transform;
+ // transform.translate(x, y).rotate(rad2deg(rotation));
+
+ // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
+
+ // if (!anticlockwise) {
+ // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
+ // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
+ // } else {
+ // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
+ // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
+ // }
+
+ // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
+ // return {};
+ // }
+
+ // m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise);
+ // return {};
+}
+
+void CanvasPath::rect(float x, float y, float width, float height)
+{
+ // if (!hasInvertibleTransform())
+ // return;
+
+ // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
+ // return;
+
+ // if (!width && !height) {
+ // m_path.moveTo(FloatPoint(x, y));
+ // return;
+ // }
+
+ // m_path.addRect(FloatRect(x, y, width, height));
+}
+
+ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii)
+{
+ // // return roundRect(x, y, width, height, Span { &radii, 1 });
+}
+
+ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const Span<const RadiusVariant>& radii)
+{
+ // // // Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
+ // // // 1. If any of x, y, w, or h are infinite or NaN, then return.
+
+ // // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
+ // // return { };
+
+ // // // 2. If radii is not a list of size one, two, three, or four, then throw a RangeError.
+ // // if (radii.size() > 4 || radii.empty())
+ // // return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") };
+
+ // // // 3. Let normalizedRadii be an empty list.
+ // // Vector<FloatPoint, 4> normalizedRadii;
+
+ // // // 4. For each radius of radii:
+ // // for (auto& radius : radii) {
+ // // auto shouldReturnSilently = false;
+ // // auto exception = WTF::switchOn(radius,
+ // // // 4.1 If radius is a DOMPointInit:
+ // // [&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> {
+ // // // 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return.
+ // // if (!std::isfinite(point.x) || !std::isfinite(point.y)) {
+ // // shouldReturnSilently = true;
+ // // return { };
+ // // }
+
+ // // // 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError.
+ // // if (point.x < 0 || point.y < 0)
+ // // return Exception { RangeError, makeString("radius point coordinates must be positive") };
+
+ // // // 4.1.3 Otherwise, append radius to normalizedRadii.
+ // // normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) });
+ // // return { };
+ // // },
+ // // // 4.2 If radius is a unrestricted double:
+ // // [&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> {
+
+ // // // 4.2.1 If radius is infinite or NaN, then return.
+ // // if (!std::isfinite(radiusValue)) {
+ // // shouldReturnSilently = true;
+ // // return { };
+ // // }
+
+ // // // 4.2.2 If radius is negative, then throw a RangeError.
+ // // if (radiusValue < 0)
+ // // return Exception { RangeError, makeString("radius value must be positive") };
+
+ // // // 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
+ // // normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) });
+ // // return { };
+ // // }
+ // // );
+ // // if (exception.hasException() || shouldReturnSilently)
+ // // return exception;
+ // // }
+
+ // // // Degenerate case, fall back to regular rect.
+ // // // We do not do this before parsing the radii in order to make sure the Exceptions can be raised.
+ // // if (!width || !height) {
+ // // rect(x, y, width, height);
+ // // return { };
+ // // }
+
+ // // // 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
+ // // FloatPoint upperLeft, upperRight, lowerRight, lowerLeft;
+
+ // // switch (normalizedRadii.size()) {
+ // // case 4:
+ // // // 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
+ // // upperLeft = normalizedRadii[0];
+ // // upperRight = normalizedRadii[1];
+ // // lowerRight = normalizedRadii[2];
+ // // lowerLeft = normalizedRadii[3];
+ // // break;
+ // // case 3:
+ // // // 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
+ // // upperLeft = normalizedRadii[0];
+ // // upperRight = normalizedRadii[1];
+ // // lowerRight = normalizedRadii[2];
+ // // lowerLeft = normalizedRadii[1];
+ // // break;
+ // // case 2:
+ // // // 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
+ // // upperLeft = normalizedRadii[0];
+ // // upperRight = normalizedRadii[1];
+ // // lowerRight = normalizedRadii[0];
+ // // lowerLeft = normalizedRadii[1];
+ // // break;
+ // // case 1:
+ // // // 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
+ // // upperLeft = normalizedRadii[0];
+ // // upperRight = normalizedRadii[0];
+ // // lowerRight = normalizedRadii[0];
+ // // lowerLeft = normalizedRadii[0];
+ // // break;
+ // // default:
+ // // RELEASE_ASSERT_NOT_REACHED();
+ // // break;
+ // // }
+
+ // // // Must handle clockwise and counter-clockwise directions properly so path winding works correctly.
+ // // bool clockwise = true;
+ // // if (width < 0) {
+ // // clockwise = !clockwise;
+ // // width = std::abs(width);
+ // // x -= width;
+ // // std::swap(upperLeft, upperRight);
+ // // std::swap(lowerLeft, lowerRight);
+ // // }
+
+ // // if (height < 0) {
+ // // clockwise = !clockwise;
+ // // height = std::abs(height);
+ // // y -= height;
+ // // std::swap(upperLeft, lowerLeft);
+ // // std::swap(upperRight, lowerRight);
+ // // }
+
+ // // // 10. Corner curves must not overlap. Scale all radii to prevent this:
+
+ // // // 10.1 Let top be upperLeft["x"] + upperRight["x"].
+ // // auto top = upperLeft.x() + upperRight.x();
+
+ // // // 10.2 Let right be upperRight["y"] + lowerRight["y"].
+ // // auto right = upperRight.y() + lowerRight.y();
+
+ // // // 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"].
+ // // auto bottom = lowerRight.x() + lowerLeft.x();
+
+ // // // 10.4 Let left be upperLeft["y"] + lowerLeft["y"].
+ // // auto left = upperLeft.y() + lowerLeft.y();
+
+ // // // 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
+ // // auto scale = std::min({ width / top, height / right, width / bottom, height / left });
+
+ // // // 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
+ // // if (scale < 1) {
+ // // upperLeft.scale(scale);
+ // // upperRight.scale(scale);
+ // // lowerLeft.scale(scale);
+ // // lowerRight.scale(scale);
+ // // }
+
+ // // // 11. Create a new subpath:
+ // // m_path.moveTo({ x + upperLeft.x(), y });
+
+ // // // The 11.x clockwise substeps are handled by Path::addRoundedRect directly.
+ // // if (clockwise) {
+ // // m_path.addRoundedRect({ FloatRect(x, y, width, height),
+ // // { static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) },
+ // // { static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) },
+ // // { static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) },
+ // // { static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) },
+ // // });
+ // // } else {
+ // // // Top Left corner
+ // // if (upperLeft.x() > 0 || upperLeft.y() > 0) {
+ // // m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y },
+ // // { x, y + upperLeft.y() * m_path.circleControlPoint() },
+ // // { x, y + upperLeft.y() });
+ // // }
+ // // // Left edge
+ // // m_path.addLineTo({ x, y + height - lowerLeft.y() });
+ // // // Bottom left corner
+ // // if (lowerLeft.x() > 0 || lowerLeft.y() > 0) {
+ // // m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() },
+ // // { x + lowerLeft.x() * m_path.circleControlPoint(), y + height },
+ // // { x + lowerLeft.x(), y + height });
+ // // }
+ // // // Bottom edge
+ // // m_path.addLineTo({ x + width - lowerRight.x(), y + height });
+ // // // Bottom right corner
+ // // if (lowerRight.x() > 0 || lowerRight.y() > 0) {
+ // // m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height },
+ // // { x + width, y + height - lowerRight.y() * m_path.circleControlPoint() },
+ // // { x + width, y + height - lowerRight.y() });
+ // // }
+ // // // Right edge
+ // // m_path.addLineTo({ x + width, y + upperRight.y() });
+ // // // Top right corner
+ // // if (upperRight.x() > 0 || upperRight.y() > 0) {
+ // // m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() },
+ // // { x + width - upperRight.x() * m_path.circleControlPoint(), y },
+ // // { x + width - upperRight.x(), y });
+ // // }
+ // // // Top edge
+ // // m_path.addLineTo({ x + upperLeft.x(), y });
+ // // }
+
+ // // // 12. Mark the subpath as closed.
+ // // m_path.closeSubpath();
+
+ // // // 13. Create a new subpath with the point (x, y) as the only point in the subpath.
+ // // m_path.moveTo({ x, y });
+
+ // // return { };
+}
+
+float CanvasPath::currentX() const
+{
+ // return m_path.currentPoint().x();
+}
+
+float CanvasPath::currentY() const
+{
+ // return m_path.currentPoint().y();
+}
+}