diff options
author | 2022-04-03 02:42:08 -0700 | |
---|---|---|
committer | 2022-04-03 02:42:08 -0700 | |
commit | 4a19a3f07f1887903e5638a3be167f0c7b377ba3 (patch) | |
tree | 24b5ebd36910d19e690352cf343943e0e6b0459d /src/javascript/jsc/bindings/webcore/CanvasPath.cpp | |
parent | e62c7dc9e5709b1ce54838aee30668a4c358a528 (diff) | |
download | bun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.tar.gz bun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.tar.zst bun-4a19a3f07f1887903e5638a3be167f0c7b377ba3.zip |
wip
Diffstat (limited to 'src/javascript/jsc/bindings/webcore/CanvasPath.cpp')
-rw-r--r-- | src/javascript/jsc/bindings/webcore/CanvasPath.cpp | 455 |
1 files changed, 455 insertions, 0 deletions
diff --git a/src/javascript/jsc/bindings/webcore/CanvasPath.cpp b/src/javascript/jsc/bindings/webcore/CanvasPath.cpp new file mode 100644 index 000000000..acac6f680 --- /dev/null +++ b/src/javascript/jsc/bindings/webcore/CanvasPath.cpp @@ -0,0 +1,455 @@ +/* + * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved. + * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) + * Copyright (C) 2007 Alp Toker <alp@atoker.com> + * Copyright (C) 2008 Eric Seidel <eric@webkit.org> + * Copyright (C) 2008 Dirk Schulze <krit@webkit.org> + * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. + * Copyright (C) 2012 Intel Corporation. All rights reserved. + * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, + * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR + * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF + * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include "config.h" +#include "CanvasPath.h" + +// #include "AffineTransform.h" +#include "DOMPointInit.h" +// #include "FloatRect.h" +// #include "FloatRoundedRect.h" +// #include "FloatSize.h" +#include <algorithm> +#include <wtf/MathExtras.h> + +namespace WebCore { + +void CanvasPath::closePath() +{ + // if (m_path.isEmpty()) + // return; + + // FloatRect boundRect = m_path.fastBoundingRect(); + // if (boundRect.width() || boundRect.height()) + // m_path.closeSubpath(); +} + +void CanvasPath::moveTo(float x, float y) +{ + // if (!std::isfinite(x) || !std::isfinite(y)) + // return; + // if (!hasInvertibleTransform()) + // return; + // m_path.moveTo(FloatPoint(x, y)); +} + +// void CanvasPath::lineTo(FloatPoint point) +// { +// // lineTo(point.x(), point.y()); +// } + +void CanvasPath::lineTo(float x, float y) +{ + // if (!std::isfinite(x) || !std::isfinite(y)) + // return; + // if (!hasInvertibleTransform()) + // return; + + // FloatPoint p1 = FloatPoint(x, y); + // if (!m_path.hasCurrentPoint()) + // m_path.moveTo(p1); + // else if (p1 != m_path.currentPoint()) + // m_path.addLineTo(p1); +} + +void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y) +{ + // if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y)) + // return; + // if (!hasInvertibleTransform()) + // return; + // if (!m_path.hasCurrentPoint()) + // m_path.moveTo(FloatPoint(cpx, cpy)); + + // FloatPoint p1 = FloatPoint(x, y); + // FloatPoint cp = FloatPoint(cpx, cpy); + // if (p1 != m_path.currentPoint() || p1 != cp) + // m_path.addQuadCurveTo(cp, p1); +} + +void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y) +{ + // if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y)) + // return; + // if (!hasInvertibleTransform()) + // return; + // if (!m_path.hasCurrentPoint()) + // m_path.moveTo(FloatPoint(cp1x, cp1y)); + + // FloatPoint p1 = FloatPoint(x, y); + // FloatPoint cp1 = FloatPoint(cp1x, cp1y); + // FloatPoint cp2 = FloatPoint(cp2x, cp2y); + // if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2) + // m_path.addBezierCurveTo(cp1, cp2, p1); +} + +ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r) +{ + // if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r)) + // return {}; + + // if (r < 0) + // return Exception { IndexSizeError }; + + // if (!hasInvertibleTransform()) + // return {}; + + // FloatPoint p1 = FloatPoint(x1, y1); + // FloatPoint p2 = FloatPoint(x2, y2); + + // if (!m_path.hasCurrentPoint()) + // m_path.moveTo(p1); + // else if (p1 == m_path.currentPoint() || p1 == p2 || !r) + // lineTo(x1, y1); + // else + // m_path.addArcTo(p1, p2, r); + + // return {}; +} + +static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise) +{ + // float newStartAngle = startAngle; + // if (newStartAngle < 0) + // newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat)); + // else + // newStartAngle = fmodf(newStartAngle, 2 * piFloat); + + // float delta = newStartAngle - startAngle; + // startAngle = newStartAngle; + // endAngle = endAngle + delta; + // ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat))); + + // if (anticlockwise && startAngle - endAngle >= 2 * piFloat) + // endAngle = startAngle - 2 * piFloat; + // else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat) + // endAngle = startAngle + 2 * piFloat; +} + +ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise) +{ + // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) + // return {}; + + // if (radius < 0) + // return Exception { IndexSizeError }; + + // if (!hasInvertibleTransform()) + // return {}; + + // normalizeAngles(startAngle, endAngle, anticlockwise); + + // if (!radius || startAngle == endAngle) { + // // The arc is empty but we still need to draw the connecting line. + // lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle)); + // return {}; + // } + + // m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise); + // return {}; +} + +ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise) +{ + // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) + // return {}; + + // if (radiusX < 0 || radiusY < 0) + // return Exception { IndexSizeError }; + + // if (!hasInvertibleTransform()) + // return {}; + + // normalizeAngles(startAngle, endAngle, anticlockwise); + + // if ((!radiusX && !radiusY) || startAngle == endAngle) { + // AffineTransform transform; + // transform.translate(x, y).rotate(rad2deg(rotation)); + + // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); + // return {}; + // } + + // if (!radiusX || !radiusY) { + // AffineTransform transform; + // transform.translate(x, y).rotate(rad2deg(rotation)); + + // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); + + // if (!anticlockwise) { + // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat) + // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); + // } else { + // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat) + // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); + // } + + // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle)))); + // return {}; + // } + + // m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise); + // return {}; +} + +void CanvasPath::rect(float x, float y, float width, float height) +{ + // if (!hasInvertibleTransform()) + // return; + + // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) + // return; + + // if (!width && !height) { + // m_path.moveTo(FloatPoint(x, y)); + // return; + // } + + // m_path.addRect(FloatRect(x, y, width, height)); +} + +ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii) +{ + // // return roundRect(x, y, width, height, Span { &radii, 1 }); +} + +ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const Span<const RadiusVariant>& radii) +{ + // // // Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect + // // // 1. If any of x, y, w, or h are infinite or NaN, then return. + + // // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) + // // return { }; + + // // // 2. If radii is not a list of size one, two, three, or four, then throw a RangeError. + // // if (radii.size() > 4 || radii.empty()) + // // return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") }; + + // // // 3. Let normalizedRadii be an empty list. + // // Vector<FloatPoint, 4> normalizedRadii; + + // // // 4. For each radius of radii: + // // for (auto& radius : radii) { + // // auto shouldReturnSilently = false; + // // auto exception = WTF::switchOn(radius, + // // // 4.1 If radius is a DOMPointInit: + // // [&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> { + // // // 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return. + // // if (!std::isfinite(point.x) || !std::isfinite(point.y)) { + // // shouldReturnSilently = true; + // // return { }; + // // } + + // // // 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError. + // // if (point.x < 0 || point.y < 0) + // // return Exception { RangeError, makeString("radius point coordinates must be positive") }; + + // // // 4.1.3 Otherwise, append radius to normalizedRadii. + // // normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) }); + // // return { }; + // // }, + // // // 4.2 If radius is a unrestricted double: + // // [&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> { + + // // // 4.2.1 If radius is infinite or NaN, then return. + // // if (!std::isfinite(radiusValue)) { + // // shouldReturnSilently = true; + // // return { }; + // // } + + // // // 4.2.2 If radius is negative, then throw a RangeError. + // // if (radiusValue < 0) + // // return Exception { RangeError, makeString("radius value must be positive") }; + + // // // 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii. + // // normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) }); + // // return { }; + // // } + // // ); + // // if (exception.hasException() || shouldReturnSilently) + // // return exception; + // // } + + // // // Degenerate case, fall back to regular rect. + // // // We do not do this before parsing the radii in order to make sure the Exceptions can be raised. + // // if (!width || !height) { + // // rect(x, y, width, height); + // // return { }; + // // } + + // // // 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null. + // // FloatPoint upperLeft, upperRight, lowerRight, lowerLeft; + + // // switch (normalizedRadii.size()) { + // // case 4: + // // // 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3]. + // // upperLeft = normalizedRadii[0]; + // // upperRight = normalizedRadii[1]; + // // lowerRight = normalizedRadii[2]; + // // lowerLeft = normalizedRadii[3]; + // // break; + // // case 3: + // // // 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2]. + // // upperLeft = normalizedRadii[0]; + // // upperRight = normalizedRadii[1]; + // // lowerRight = normalizedRadii[2]; + // // lowerLeft = normalizedRadii[1]; + // // break; + // // case 2: + // // // 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1]. + // // upperLeft = normalizedRadii[0]; + // // upperRight = normalizedRadii[1]; + // // lowerRight = normalizedRadii[0]; + // // lowerLeft = normalizedRadii[1]; + // // break; + // // case 1: + // // // 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0]. + // // upperLeft = normalizedRadii[0]; + // // upperRight = normalizedRadii[0]; + // // lowerRight = normalizedRadii[0]; + // // lowerLeft = normalizedRadii[0]; + // // break; + // // default: + // // RELEASE_ASSERT_NOT_REACHED(); + // // break; + // // } + + // // // Must handle clockwise and counter-clockwise directions properly so path winding works correctly. + // // bool clockwise = true; + // // if (width < 0) { + // // clockwise = !clockwise; + // // width = std::abs(width); + // // x -= width; + // // std::swap(upperLeft, upperRight); + // // std::swap(lowerLeft, lowerRight); + // // } + + // // if (height < 0) { + // // clockwise = !clockwise; + // // height = std::abs(height); + // // y -= height; + // // std::swap(upperLeft, lowerLeft); + // // std::swap(upperRight, lowerRight); + // // } + + // // // 10. Corner curves must not overlap. Scale all radii to prevent this: + + // // // 10.1 Let top be upperLeft["x"] + upperRight["x"]. + // // auto top = upperLeft.x() + upperRight.x(); + + // // // 10.2 Let right be upperRight["y"] + lowerRight["y"]. + // // auto right = upperRight.y() + lowerRight.y(); + + // // // 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"]. + // // auto bottom = lowerRight.x() + lowerLeft.x(); + + // // // 10.4 Let left be upperLeft["y"] + lowerLeft["y"]. + // // auto left = upperLeft.y() + lowerLeft.y(); + + // // // 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left. + // // auto scale = std::min({ width / top, height / right, width / bottom, height / left }); + + // // // 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale. + // // if (scale < 1) { + // // upperLeft.scale(scale); + // // upperRight.scale(scale); + // // lowerLeft.scale(scale); + // // lowerRight.scale(scale); + // // } + + // // // 11. Create a new subpath: + // // m_path.moveTo({ x + upperLeft.x(), y }); + + // // // The 11.x clockwise substeps are handled by Path::addRoundedRect directly. + // // if (clockwise) { + // // m_path.addRoundedRect({ FloatRect(x, y, width, height), + // // { static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) }, + // // { static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) }, + // // { static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) }, + // // { static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) }, + // // }); + // // } else { + // // // Top Left corner + // // if (upperLeft.x() > 0 || upperLeft.y() > 0) { + // // m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y }, + // // { x, y + upperLeft.y() * m_path.circleControlPoint() }, + // // { x, y + upperLeft.y() }); + // // } + // // // Left edge + // // m_path.addLineTo({ x, y + height - lowerLeft.y() }); + // // // Bottom left corner + // // if (lowerLeft.x() > 0 || lowerLeft.y() > 0) { + // // m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() }, + // // { x + lowerLeft.x() * m_path.circleControlPoint(), y + height }, + // // { x + lowerLeft.x(), y + height }); + // // } + // // // Bottom edge + // // m_path.addLineTo({ x + width - lowerRight.x(), y + height }); + // // // Bottom right corner + // // if (lowerRight.x() > 0 || lowerRight.y() > 0) { + // // m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height }, + // // { x + width, y + height - lowerRight.y() * m_path.circleControlPoint() }, + // // { x + width, y + height - lowerRight.y() }); + // // } + // // // Right edge + // // m_path.addLineTo({ x + width, y + upperRight.y() }); + // // // Top right corner + // // if (upperRight.x() > 0 || upperRight.y() > 0) { + // // m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() }, + // // { x + width - upperRight.x() * m_path.circleControlPoint(), y }, + // // { x + width - upperRight.x(), y }); + // // } + // // // Top edge + // // m_path.addLineTo({ x + upperLeft.x(), y }); + // // } + + // // // 12. Mark the subpath as closed. + // // m_path.closeSubpath(); + + // // // 13. Create a new subpath with the point (x, y) as the only point in the subpath. + // // m_path.moveTo({ x, y }); + + // // return { }; +} + +float CanvasPath::currentX() const +{ + // return m_path.currentPoint().x(); +} + +float CanvasPath::currentY() const +{ + // return m_path.currentPoint().y(); +} +} |