1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
const mem = @import("std").mem;
const builtin = @import("std").builtin;
const std = @import("std");
const mimalloc = @import("./allocators/mimalloc.zig");
const FeatureFlags = @import("./feature_flags.zig");
const Environment = @import("./env.zig");
const c = struct {
pub const malloc_size = mimalloc.mi_malloc_size;
pub const malloc_usable_size = mimalloc.mi_malloc_usable_size;
pub const malloc = struct {
pub inline fn malloc_wrapped(size: usize) ?*anyopaque {
if (comptime FeatureFlags.log_allocations) std.debug.print("Malloc: {d}\n", .{size});
return mimalloc.mi_malloc(size);
}
}.malloc_wrapped;
pub inline fn free(ptr: anytype) void {
if (comptime Environment.allow_assert) {
assert(mimalloc.mi_is_in_heap_region(ptr));
}
mimalloc.mi_free(ptr);
}
pub const posix_memalign = struct {
pub inline fn mi_posix_memalign(p: [*c]?*anyopaque, alignment: usize, size: usize) c_int {
if (comptime FeatureFlags.log_allocations) std.debug.print("Posix_memalign: {d}\n", .{std.mem.alignForward(size, alignment)});
return mimalloc.mi_posix_memalign(p, alignment, size);
}
}.mi_posix_memalign;
};
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const CAllocator = struct {
const malloc_size = c.malloc_size;
pub const supports_posix_memalign = true;
// This is copied from Rust's mimalloc integration
const MI_MAX_ALIGN_SIZE = 16;
inline fn mi_malloc_satisfies_alignment(alignment: usize, size: usize) bool {
return (alignment == @sizeOf(*anyopaque) or
(alignment == MI_MAX_ALIGN_SIZE and size > (MI_MAX_ALIGN_SIZE / 2)));
}
fn alignedAlloc(len: usize, alignment: usize) ?[*]u8 {
if (comptime FeatureFlags.log_allocations) std.debug.print("Malloc: {d}\n", .{len});
var ptr = if (mi_malloc_satisfies_alignment(alignment, len))
mimalloc.mi_malloc(len)
else
mimalloc.mi_malloc_aligned(len, alignment);
return @ptrCast([*]u8, ptr orelse null);
}
fn alignedAllocSize(ptr: [*]u8) usize {
return CAllocator.malloc_size(ptr);
}
fn alloc(
_: *anyopaque,
len: usize,
alignment: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
_ = return_address;
assert(len > 0);
assert(std.math.isPowerOfTwo(alignment));
var ptr = alignedAlloc(len, alignment) orelse return error.OutOfMemory;
if (len_align == 0) {
return ptr[0..len];
}
return ptr[0..mem.alignBackwardAnyAlign(mimalloc.mi_usable_size(ptr), len_align)];
}
fn resize(
_: *anyopaque,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) ?usize {
_ = buf_align;
_ = return_address;
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
const full_len = alignedAllocSize(buf.ptr);
if (new_len <= full_len) {
return mem.alignAllocLen(full_len, new_len, len_align);
}
return null;
}
fn free(
_: *anyopaque,
buf: []u8,
buf_align: u29,
return_address: usize,
) void {
_ = buf_align;
_ = return_address;
// mi_free_size internally just asserts the size
// so it's faster if we don't pass that value through
// but its good to have that assertion
if (comptime Environment.allow_assert) {
mimalloc.mi_free_size(buf.ptr, buf.len);
} else {
mimalloc.mi_free(buf.ptr);
}
}
};
pub const c_allocator = Allocator{
.ptr = undefined,
.vtable = &c_allocator_vtable,
};
const c_allocator_vtable = Allocator.VTable{
.alloc = CAllocator.alloc,
.resize = CAllocator.resize,
.free = CAllocator.free,
};
// This is a memory allocator which always writes zero instead of undefined
const ZAllocator = struct {
const malloc_size = c.malloc_size;
pub const supports_posix_memalign = true;
// This is copied from Rust's mimalloc integration
const MI_MAX_ALIGN_SIZE = 16;
inline fn mi_malloc_satisfies_alignment(alignment: usize, size: usize) bool {
return (alignment == @sizeOf(*anyopaque) or
(alignment == MI_MAX_ALIGN_SIZE and size > (MI_MAX_ALIGN_SIZE / 2)));
}
fn alignedAlloc(len: usize, alignment: usize) ?[*]u8 {
if (comptime FeatureFlags.log_allocations) std.debug.print("Malloc: {d}\n", .{len});
var ptr = if (mi_malloc_satisfies_alignment(alignment, len))
mimalloc.mi_zalloc(len)
else
mimalloc.mi_zalloc_aligned(len, alignment);
return @ptrCast([*]u8, ptr orelse null);
}
fn alignedAllocSize(ptr: [*]u8) usize {
return ZAllocator.malloc_size(ptr);
}
fn alloc(
_: *anyopaque,
len: usize,
alignment: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
_ = return_address;
assert(len > 0);
assert(std.math.isPowerOfTwo(alignment));
var ptr = alignedAlloc(len, alignment) orelse return error.OutOfMemory;
if (len_align == 0) {
return ptr[0..len];
}
return ptr[0..mem.alignBackwardAnyAlign(mimalloc.mi_usable_size(ptr), len_align)];
}
fn resize(
_: *anyopaque,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) ?usize {
_ = buf_align;
_ = return_address;
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
const full_len = alignedAllocSize(buf.ptr);
if (new_len <= full_len) {
return mem.alignAllocLen(full_len, new_len, len_align);
}
return null;
}
fn free(
_: *anyopaque,
buf: []u8,
buf_align: u29,
return_address: usize,
) void {
_ = buf_align;
_ = return_address;
mimalloc.mi_free(buf.ptr);
}
};
pub const z_allocator = Allocator{
.ptr = undefined,
.vtable = &z_allocator_vtable,
};
const z_allocator_vtable = Allocator.VTable{
.alloc = ZAllocator.alloc,
.resize = ZAllocator.resize,
.free = ZAllocator.free,
};
|