1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
const mem = @import("std").mem;
const builtin = @import("std").builtin;
const std = @import("std");
const mimalloc = @import("./allocators/mimalloc.zig");
const Environment = @import("./env.zig");
const FeatureFlags = @import("./feature_flags.zig");
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const bun = @import("./global.zig");
pub const GlobalArena = struct {
arena: Arena,
fallback_allocator: std.mem.Allocator,
pub fn initWithCapacity(capacity: usize, fallback: std.mem.Allocator) error{OutOfMemory}!GlobalArena {
const arena = try Arena.initWithCapacity(capacity);
return GlobalArena{
.arena = arena,
.fallback_allocator = fallback,
};
}
pub fn allocator(this: *GlobalArena) Allocator {
return std.mem.Allocator.init(this, alloc, resize, free);
}
fn alloc(
self: *GlobalArena,
len: usize,
ptr_align: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
return self.arena.alloc(len, ptr_align, len_align, return_address) catch
return self.fallback_allocator.rawAlloc(len, ptr_align, len_align, return_address);
}
fn resize(
self: *GlobalArena,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) ?usize {
if (self.arena.ownsPtr(buf.ptr)) {
return self.arena.resize(buf, buf_align, new_len, len_align, return_address);
} else {
return self.fallback_allocator.rawResize(buf, buf_align, new_len, len_align, return_address);
}
}
fn free(
self: *GlobalArena,
buf: []u8,
buf_align: u29,
return_address: usize,
) void {
if (self.arena.ownsPtr(buf.ptr)) {
return self.arena.free(buf, buf_align, return_address);
} else {
return self.fallback_allocator.rawFree(buf, buf_align, return_address);
}
}
};
pub const Arena = struct {
heap: ?*mimalloc.Heap = null,
arena_id: mimalloc.ArenaID = -1,
pub fn initWithCapacity(capacity: usize) error{OutOfMemory}!Arena {
var arena_id: mimalloc.ArenaID = -1;
std.debug.assert(capacity >= 8 * 1024 * 1024); // mimalloc requires a minimum of 8MB
// which makes this not very useful for us!
if (!mimalloc.mi_manage_os_memory_ex(null, capacity, true, true, false, -1, true, &arena_id)) {
if (!mimalloc.mi_manage_os_memory_ex(null, capacity, false, false, false, -1, true, &arena_id)) {
return error.OutOfMemory;
}
}
std.debug.assert(arena_id != -1);
var heap = mimalloc.mi_heap_new_in_arena(arena_id) orelse return error.OutOfMemory;
return Arena{
.heap = heap,
.arena_id = arena_id,
};
}
/// Internally, mimalloc calls mi_heap_get_default()
/// to get the default heap.
/// It uses pthread_getspecific to do that.
/// We can save those extra calls if we just do it once in here
pub fn getThreadlocalDefault() Allocator {
return Allocator{ .ptr = mimalloc.mi_heap_get_default(), .vtable = &c_allocator_vtable };
}
pub fn backingAllocator(this: Arena) Allocator {
var arena = Arena{ .heap = this.heap.?.backing() };
return arena.allocator();
}
pub fn allocator(this: Arena) Allocator {
@setRuntimeSafety(false);
return Allocator{ .ptr = this.heap.?, .vtable = &c_allocator_vtable };
}
pub fn deinit(this: *Arena) void {
mimalloc.mi_heap_destroy(this.heap.?);
this.heap = null;
}
pub fn dumpThreadStats(_: *Arena) void {
const dump_fn = struct {
pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.C) void {
const text = bun.span(textZ);
bun.Output.errorWriter().writeAll(text) catch {};
}
}.dump;
mimalloc.mi_thread_stats_print_out(dump_fn, null);
bun.Output.flush();
}
pub fn dumpStats(_: *Arena) void {
const dump_fn = struct {
pub fn dump(textZ: [*:0]const u8, _: ?*anyopaque) callconv(.C) void {
const text = bun.span(textZ);
bun.Output.errorWriter().writeAll(text) catch {};
}
}.dump;
mimalloc.mi_stats_print_out(dump_fn, null);
bun.Output.flush();
}
pub fn reset(this: *Arena) void {
this.deinit();
this.* = init() catch unreachable;
}
pub fn init() !Arena {
return Arena{ .heap = mimalloc.mi_heap_new() orelse return error.OutOfMemory };
}
pub fn gc(this: Arena, force: bool) void {
mimalloc.mi_heap_collect(this.heap orelse return, force);
}
pub fn ownsPtr(this: Arena, ptr: *const anyopaque) bool {
return mimalloc.mi_heap_check_owned(this.heap.?, ptr);
}
// Copied from rust
const MI_MAX_ALIGN_SIZE = 16;
inline fn mi_malloc_satisfies_alignment(alignment: usize, size: usize) bool {
return (alignment == @sizeOf(*anyopaque) or
(alignment == MI_MAX_ALIGN_SIZE and size > (MI_MAX_ALIGN_SIZE / 2)));
}
fn alignedAlloc(heap: *mimalloc.Heap, len: usize, alignment: usize) ?[*]u8 {
if (comptime FeatureFlags.log_allocations) std.debug.print("Malloc: {d}\n", .{len});
// this is the logic that posix_memalign does
var ptr = mimalloc.mi_heap_malloc_aligned(heap, len, alignment);
return @ptrCast([*]u8, ptr orelse null);
}
pub fn alloc(
arena: *anyopaque,
len: usize,
alignment: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
_ = return_address;
assert(len > 0);
assert(std.math.isPowerOfTwo(alignment));
var ptr = alignedAlloc(@ptrCast(*mimalloc.Heap, arena), len, alignment) orelse return error.OutOfMemory;
if (len_align == 0) {
return ptr[0..len];
}
// std.mem.Allocator asserts this, we do it here so we can see the metadata
if (comptime Environment.allow_assert) {
const size = mem.alignBackwardAnyAlign(mimalloc.mi_usable_size(ptr), len_align);
assert(size >= len);
return ptr[0..size];
} else {
return ptr[0..mem.alignBackwardAnyAlign(mimalloc.mi_usable_size(ptr), len_align)];
}
}
pub fn resize(
_: *anyopaque,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) ?usize {
_ = buf_align;
_ = return_address;
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
const full_len = mimalloc.mi_usable_size(buf.ptr);
if (new_len <= full_len) {
return mem.alignAllocLen(full_len, new_len, len_align);
}
return null;
}
pub fn free(
_: *anyopaque,
buf: []u8,
buf_align: u29,
return_address: usize,
) void {
_ = buf_align;
_ = return_address;
if (comptime Environment.allow_assert) {
assert(mimalloc.mi_is_in_heap_region(buf.ptr));
mimalloc.mi_free_size_aligned(buf.ptr, buf.len, buf_align);
} else {
mimalloc.mi_free(buf.ptr);
}
}
};
const c_allocator_vtable = Allocator.VTable{
.alloc = Arena.alloc,
.resize = Arena.resize,
.free = Arena.free,
};
|