diff options
Diffstat (limited to 'vendor/github.com/google/btree/btree.go')
-rw-r--r-- | vendor/github.com/google/btree/btree.go | 881 |
1 files changed, 0 insertions, 881 deletions
diff --git a/vendor/github.com/google/btree/btree.go b/vendor/github.com/google/btree/btree.go deleted file mode 100644 index 7e4551d73..000000000 --- a/vendor/github.com/google/btree/btree.go +++ /dev/null @@ -1,881 +0,0 @@ -// Copyright 2014 Google Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// Package btree implements in-memory B-Trees of arbitrary degree. -// -// btree implements an in-memory B-Tree for use as an ordered data structure. -// It is not meant for persistent storage solutions. -// -// It has a flatter structure than an equivalent red-black or other binary tree, -// which in some cases yields better memory usage and/or performance. -// See some discussion on the matter here: -// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html -// Note, though, that this project is in no way related to the C++ B-Tree -// implementation written about there. -// -// Within this tree, each node contains a slice of items and a (possibly nil) -// slice of children. For basic numeric values or raw structs, this can cause -// efficiency differences when compared to equivalent C++ template code that -// stores values in arrays within the node: -// * Due to the overhead of storing values as interfaces (each -// value needs to be stored as the value itself, then 2 words for the -// interface pointing to that value and its type), resulting in higher -// memory use. -// * Since interfaces can point to values anywhere in memory, values are -// most likely not stored in contiguous blocks, resulting in a higher -// number of cache misses. -// These issues don't tend to matter, though, when working with strings or other -// heap-allocated structures, since C++-equivalent structures also must store -// pointers and also distribute their values across the heap. -// -// This implementation is designed to be a drop-in replacement to gollrb.LLRB -// trees, (http://github.com/petar/gollrb), an excellent and probably the most -// widely used ordered tree implementation in the Go ecosystem currently. -// Its functions, therefore, exactly mirror those of -// llrb.LLRB where possible. Unlike gollrb, though, we currently don't -// support storing multiple equivalent values. -package btree - -import ( - "fmt" - "io" - "sort" - "strings" - "sync" -) - -// Item represents a single object in the tree. -type Item interface { - // Less tests whether the current item is less than the given argument. - // - // This must provide a strict weak ordering. - // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only - // hold one of either a or b in the tree). - Less(than Item) bool -} - -const ( - DefaultFreeListSize = 32 -) - -var ( - nilItems = make(items, 16) - nilChildren = make(children, 16) -) - -// FreeList represents a free list of btree nodes. By default each -// BTree has its own FreeList, but multiple BTrees can share the same -// FreeList. -// Two Btrees using the same freelist are safe for concurrent write access. -type FreeList struct { - mu sync.Mutex - freelist []*node -} - -// NewFreeList creates a new free list. -// size is the maximum size of the returned free list. -func NewFreeList(size int) *FreeList { - return &FreeList{freelist: make([]*node, 0, size)} -} - -func (f *FreeList) newNode() (n *node) { - f.mu.Lock() - index := len(f.freelist) - 1 - if index < 0 { - f.mu.Unlock() - return new(node) - } - n = f.freelist[index] - f.freelist[index] = nil - f.freelist = f.freelist[:index] - f.mu.Unlock() - return -} - -// freeNode adds the given node to the list, returning true if it was added -// and false if it was discarded. -func (f *FreeList) freeNode(n *node) (out bool) { - f.mu.Lock() - if len(f.freelist) < cap(f.freelist) { - f.freelist = append(f.freelist, n) - out = true - } - f.mu.Unlock() - return -} - -// ItemIterator allows callers of Ascend* to iterate in-order over portions of -// the tree. When this function returns false, iteration will stop and the -// associated Ascend* function will immediately return. -type ItemIterator func(i Item) bool - -// New creates a new B-Tree with the given degree. -// -// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items -// and 2-4 children). -func New(degree int) *BTree { - return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize)) -} - -// NewWithFreeList creates a new B-Tree that uses the given node free list. -func NewWithFreeList(degree int, f *FreeList) *BTree { - if degree <= 1 { - panic("bad degree") - } - return &BTree{ - degree: degree, - cow: ©OnWriteContext{freelist: f}, - } -} - -// items stores items in a node. -type items []Item - -// insertAt inserts a value into the given index, pushing all subsequent values -// forward. -func (s *items) insertAt(index int, item Item) { - *s = append(*s, nil) - if index < len(*s) { - copy((*s)[index+1:], (*s)[index:]) - } - (*s)[index] = item -} - -// removeAt removes a value at a given index, pulling all subsequent values -// back. -func (s *items) removeAt(index int) Item { - item := (*s)[index] - copy((*s)[index:], (*s)[index+1:]) - (*s)[len(*s)-1] = nil - *s = (*s)[:len(*s)-1] - return item -} - -// pop removes and returns the last element in the list. -func (s *items) pop() (out Item) { - index := len(*s) - 1 - out = (*s)[index] - (*s)[index] = nil - *s = (*s)[:index] - return -} - -// truncate truncates this instance at index so that it contains only the -// first index items. index must be less than or equal to length. -func (s *items) truncate(index int) { - var toClear items - *s, toClear = (*s)[:index], (*s)[index:] - for len(toClear) > 0 { - toClear = toClear[copy(toClear, nilItems):] - } -} - -// find returns the index where the given item should be inserted into this -// list. 'found' is true if the item already exists in the list at the given -// index. -func (s items) find(item Item) (index int, found bool) { - i := sort.Search(len(s), func(i int) bool { - return item.Less(s[i]) - }) - if i > 0 && !s[i-1].Less(item) { - return i - 1, true - } - return i, false -} - -// children stores child nodes in a node. -type children []*node - -// insertAt inserts a value into the given index, pushing all subsequent values -// forward. -func (s *children) insertAt(index int, n *node) { - *s = append(*s, nil) - if index < len(*s) { - copy((*s)[index+1:], (*s)[index:]) - } - (*s)[index] = n -} - -// removeAt removes a value at a given index, pulling all subsequent values -// back. -func (s *children) removeAt(index int) *node { - n := (*s)[index] - copy((*s)[index:], (*s)[index+1:]) - (*s)[len(*s)-1] = nil - *s = (*s)[:len(*s)-1] - return n -} - -// pop removes and returns the last element in the list. -func (s *children) pop() (out *node) { - index := len(*s) - 1 - out = (*s)[index] - (*s)[index] = nil - *s = (*s)[:index] - return -} - -// truncate truncates this instance at index so that it contains only the -// first index children. index must be less than or equal to length. -func (s *children) truncate(index int) { - var toClear children - *s, toClear = (*s)[:index], (*s)[index:] - for len(toClear) > 0 { - toClear = toClear[copy(toClear, nilChildren):] - } -} - -// node is an internal node in a tree. -// -// It must at all times maintain the invariant that either -// * len(children) == 0, len(items) unconstrained -// * len(children) == len(items) + 1 -type node struct { - items items - children children - cow *copyOnWriteContext -} - -func (n *node) mutableFor(cow *copyOnWriteContext) *node { - if n.cow == cow { - return n - } - out := cow.newNode() - if cap(out.items) >= len(n.items) { - out.items = out.items[:len(n.items)] - } else { - out.items = make(items, len(n.items), cap(n.items)) - } - copy(out.items, n.items) - // Copy children - if cap(out.children) >= len(n.children) { - out.children = out.children[:len(n.children)] - } else { - out.children = make(children, len(n.children), cap(n.children)) - } - copy(out.children, n.children) - return out -} - -func (n *node) mutableChild(i int) *node { - c := n.children[i].mutableFor(n.cow) - n.children[i] = c - return c -} - -// split splits the given node at the given index. The current node shrinks, -// and this function returns the item that existed at that index and a new node -// containing all items/children after it. -func (n *node) split(i int) (Item, *node) { - item := n.items[i] - next := n.cow.newNode() - next.items = append(next.items, n.items[i+1:]...) - n.items.truncate(i) - if len(n.children) > 0 { - next.children = append(next.children, n.children[i+1:]...) - n.children.truncate(i + 1) - } - return item, next -} - -// maybeSplitChild checks if a child should be split, and if so splits it. -// Returns whether or not a split occurred. -func (n *node) maybeSplitChild(i, maxItems int) bool { - if len(n.children[i].items) < maxItems { - return false - } - first := n.mutableChild(i) - item, second := first.split(maxItems / 2) - n.items.insertAt(i, item) - n.children.insertAt(i+1, second) - return true -} - -// insert inserts an item into the subtree rooted at this node, making sure -// no nodes in the subtree exceed maxItems items. Should an equivalent item be -// be found/replaced by insert, it will be returned. -func (n *node) insert(item Item, maxItems int) Item { - i, found := n.items.find(item) - if found { - out := n.items[i] - n.items[i] = item - return out - } - if len(n.children) == 0 { - n.items.insertAt(i, item) - return nil - } - if n.maybeSplitChild(i, maxItems) { - inTree := n.items[i] - switch { - case item.Less(inTree): - // no change, we want first split node - case inTree.Less(item): - i++ // we want second split node - default: - out := n.items[i] - n.items[i] = item - return out - } - } - return n.mutableChild(i).insert(item, maxItems) -} - -// get finds the given key in the subtree and returns it. -func (n *node) get(key Item) Item { - i, found := n.items.find(key) - if found { - return n.items[i] - } else if len(n.children) > 0 { - return n.children[i].get(key) - } - return nil -} - -// min returns the first item in the subtree. -func min(n *node) Item { - if n == nil { - return nil - } - for len(n.children) > 0 { - n = n.children[0] - } - if len(n.items) == 0 { - return nil - } - return n.items[0] -} - -// max returns the last item in the subtree. -func max(n *node) Item { - if n == nil { - return nil - } - for len(n.children) > 0 { - n = n.children[len(n.children)-1] - } - if len(n.items) == 0 { - return nil - } - return n.items[len(n.items)-1] -} - -// toRemove details what item to remove in a node.remove call. -type toRemove int - -const ( - removeItem toRemove = iota // removes the given item - removeMin // removes smallest item in the subtree - removeMax // removes largest item in the subtree -) - -// remove removes an item from the subtree rooted at this node. -func (n *node) remove(item Item, minItems int, typ toRemove) Item { - var i int - var found bool - switch typ { - case removeMax: - if len(n.children) == 0 { - return n.items.pop() - } - i = len(n.items) - case removeMin: - if len(n.children) == 0 { - return n.items.removeAt(0) - } - i = 0 - case removeItem: - i, found = n.items.find(item) - if len(n.children) == 0 { - if found { - return n.items.removeAt(i) - } - return nil - } - default: - panic("invalid type") - } - // If we get to here, we have children. - if len(n.children[i].items) <= minItems { - return n.growChildAndRemove(i, item, minItems, typ) - } - child := n.mutableChild(i) - // Either we had enough items to begin with, or we've done some - // merging/stealing, because we've got enough now and we're ready to return - // stuff. - if found { - // The item exists at index 'i', and the child we've selected can give us a - // predecessor, since if we've gotten here it's got > minItems items in it. - out := n.items[i] - // We use our special-case 'remove' call with typ=maxItem to pull the - // predecessor of item i (the rightmost leaf of our immediate left child) - // and set it into where we pulled the item from. - n.items[i] = child.remove(nil, minItems, removeMax) - return out - } - // Final recursive call. Once we're here, we know that the item isn't in this - // node and that the child is big enough to remove from. - return child.remove(item, minItems, typ) -} - -// growChildAndRemove grows child 'i' to make sure it's possible to remove an -// item from it while keeping it at minItems, then calls remove to actually -// remove it. -// -// Most documentation says we have to do two sets of special casing: -// 1) item is in this node -// 2) item is in child -// In both cases, we need to handle the two subcases: -// A) node has enough values that it can spare one -// B) node doesn't have enough values -// For the latter, we have to check: -// a) left sibling has node to spare -// b) right sibling has node to spare -// c) we must merge -// To simplify our code here, we handle cases #1 and #2 the same: -// If a node doesn't have enough items, we make sure it does (using a,b,c). -// We then simply redo our remove call, and the second time (regardless of -// whether we're in case 1 or 2), we'll have enough items and can guarantee -// that we hit case A. -func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item { - if i > 0 && len(n.children[i-1].items) > minItems { - // Steal from left child - child := n.mutableChild(i) - stealFrom := n.mutableChild(i - 1) - stolenItem := stealFrom.items.pop() - child.items.insertAt(0, n.items[i-1]) - n.items[i-1] = stolenItem - if len(stealFrom.children) > 0 { - child.children.insertAt(0, stealFrom.children.pop()) - } - } else if i < len(n.items) && len(n.children[i+1].items) > minItems { - // steal from right child - child := n.mutableChild(i) - stealFrom := n.mutableChild(i + 1) - stolenItem := stealFrom.items.removeAt(0) - child.items = append(child.items, n.items[i]) - n.items[i] = stolenItem - if len(stealFrom.children) > 0 { - child.children = append(child.children, stealFrom.children.removeAt(0)) - } - } else { - if i >= len(n.items) { - i-- - } - child := n.mutableChild(i) - // merge with right child - mergeItem := n.items.removeAt(i) - mergeChild := n.children.removeAt(i + 1) - child.items = append(child.items, mergeItem) - child.items = append(child.items, mergeChild.items...) - child.children = append(child.children, mergeChild.children...) - n.cow.freeNode(mergeChild) - } - return n.remove(item, minItems, typ) -} - -type direction int - -const ( - descend = direction(-1) - ascend = direction(+1) -) - -// iterate provides a simple method for iterating over elements in the tree. -// -// When ascending, the 'start' should be less than 'stop' and when descending, -// the 'start' should be greater than 'stop'. Setting 'includeStart' to true -// will force the iterator to include the first item when it equals 'start', -// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a -// "greaterThan" or "lessThan" queries. -func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) { - var ok bool - switch dir { - case ascend: - for i := 0; i < len(n.items); i++ { - if start != nil && n.items[i].Less(start) { - continue - } - if len(n.children) > 0 { - if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok { - return hit, false - } - } - if !includeStart && !hit && start != nil && !start.Less(n.items[i]) { - hit = true - continue - } - hit = true - if stop != nil && !n.items[i].Less(stop) { - return hit, false - } - if !iter(n.items[i]) { - return hit, false - } - } - if len(n.children) > 0 { - if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok { - return hit, false - } - } - case descend: - for i := len(n.items) - 1; i >= 0; i-- { - if start != nil && !n.items[i].Less(start) { - if !includeStart || hit || start.Less(n.items[i]) { - continue - } - } - if len(n.children) > 0 { - if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok { - return hit, false - } - } - if stop != nil && !stop.Less(n.items[i]) { - return hit, false // continue - } - hit = true - if !iter(n.items[i]) { - return hit, false - } - } - if len(n.children) > 0 { - if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok { - return hit, false - } - } - } - return hit, true -} - -// Used for testing/debugging purposes. -func (n *node) print(w io.Writer, level int) { - fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items) - for _, c := range n.children { - c.print(w, level+1) - } -} - -// BTree is an implementation of a B-Tree. -// -// BTree stores Item instances in an ordered structure, allowing easy insertion, -// removal, and iteration. -// -// Write operations are not safe for concurrent mutation by multiple -// goroutines, but Read operations are. -type BTree struct { - degree int - length int - root *node - cow *copyOnWriteContext -} - -// copyOnWriteContext pointers determine node ownership... a tree with a write -// context equivalent to a node's write context is allowed to modify that node. -// A tree whose write context does not match a node's is not allowed to modify -// it, and must create a new, writable copy (IE: it's a Clone). -// -// When doing any write operation, we maintain the invariant that the current -// node's context is equal to the context of the tree that requested the write. -// We do this by, before we descend into any node, creating a copy with the -// correct context if the contexts don't match. -// -// Since the node we're currently visiting on any write has the requesting -// tree's context, that node is modifiable in place. Children of that node may -// not share context, but before we descend into them, we'll make a mutable -// copy. -type copyOnWriteContext struct { - freelist *FreeList -} - -// Clone clones the btree, lazily. Clone should not be called concurrently, -// but the original tree (t) and the new tree (t2) can be used concurrently -// once the Clone call completes. -// -// The internal tree structure of b is marked read-only and shared between t and -// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes -// whenever one of b's original nodes would have been modified. Read operations -// should have no performance degredation. Write operations for both t and t2 -// will initially experience minor slow-downs caused by additional allocs and -// copies due to the aforementioned copy-on-write logic, but should converge to -// the original performance characteristics of the original tree. -func (t *BTree) Clone() (t2 *BTree) { - // Create two entirely new copy-on-write contexts. - // This operation effectively creates three trees: - // the original, shared nodes (old b.cow) - // the new b.cow nodes - // the new out.cow nodes - cow1, cow2 := *t.cow, *t.cow - out := *t - t.cow = &cow1 - out.cow = &cow2 - return &out -} - -// maxItems returns the max number of items to allow per node. -func (t *BTree) maxItems() int { - return t.degree*2 - 1 -} - -// minItems returns the min number of items to allow per node (ignored for the -// root node). -func (t *BTree) minItems() int { - return t.degree - 1 -} - -func (c *copyOnWriteContext) newNode() (n *node) { - n = c.freelist.newNode() - n.cow = c - return -} - -type freeType int - -const ( - ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist) - ftStored // node was stored in the freelist for later use - ftNotOwned // node was ignored by COW, since it's owned by another one -) - -// freeNode frees a node within a given COW context, if it's owned by that -// context. It returns what happened to the node (see freeType const -// documentation). -func (c *copyOnWriteContext) freeNode(n *node) freeType { - if n.cow == c { - // clear to allow GC - n.items.truncate(0) - n.children.truncate(0) - n.cow = nil - if c.freelist.freeNode(n) { - return ftStored - } else { - return ftFreelistFull - } - } else { - return ftNotOwned - } -} - -// ReplaceOrInsert adds the given item to the tree. If an item in the tree -// already equals the given one, it is removed from the tree and returned. -// Otherwise, nil is returned. -// -// nil cannot be added to the tree (will panic). -func (t *BTree) ReplaceOrInsert(item Item) Item { - if item == nil { - panic("nil item being added to BTree") - } - if t.root == nil { - t.root = t.cow.newNode() - t.root.items = append(t.root.items, item) - t.length++ - return nil - } else { - t.root = t.root.mutableFor(t.cow) - if len(t.root.items) >= t.maxItems() { - item2, second := t.root.split(t.maxItems() / 2) - oldroot := t.root - t.root = t.cow.newNode() - t.root.items = append(t.root.items, item2) - t.root.children = append(t.root.children, oldroot, second) - } - } - out := t.root.insert(item, t.maxItems()) - if out == nil { - t.length++ - } - return out -} - -// Delete removes an item equal to the passed in item from the tree, returning -// it. If no such item exists, returns nil. -func (t *BTree) Delete(item Item) Item { - return t.deleteItem(item, removeItem) -} - -// DeleteMin removes the smallest item in the tree and returns it. -// If no such item exists, returns nil. -func (t *BTree) DeleteMin() Item { - return t.deleteItem(nil, removeMin) -} - -// DeleteMax removes the largest item in the tree and returns it. -// If no such item exists, returns nil. -func (t *BTree) DeleteMax() Item { - return t.deleteItem(nil, removeMax) -} - -func (t *BTree) deleteItem(item Item, typ toRemove) Item { - if t.root == nil || len(t.root.items) == 0 { - return nil - } - t.root = t.root.mutableFor(t.cow) - out := t.root.remove(item, t.minItems(), typ) - if len(t.root.items) == 0 && len(t.root.children) > 0 { - oldroot := t.root - t.root = t.root.children[0] - t.cow.freeNode(oldroot) - } - if out != nil { - t.length-- - } - return out -} - -// AscendRange calls the iterator for every value in the tree within the range -// [greaterOrEqual, lessThan), until iterator returns false. -func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator) -} - -// AscendLessThan calls the iterator for every value in the tree within the range -// [first, pivot), until iterator returns false. -func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(ascend, nil, pivot, false, false, iterator) -} - -// AscendGreaterOrEqual calls the iterator for every value in the tree within -// the range [pivot, last], until iterator returns false. -func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(ascend, pivot, nil, true, false, iterator) -} - -// Ascend calls the iterator for every value in the tree within the range -// [first, last], until iterator returns false. -func (t *BTree) Ascend(iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(ascend, nil, nil, false, false, iterator) -} - -// DescendRange calls the iterator for every value in the tree within the range -// [lessOrEqual, greaterThan), until iterator returns false. -func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator) -} - -// DescendLessOrEqual calls the iterator for every value in the tree within the range -// [pivot, first], until iterator returns false. -func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(descend, pivot, nil, true, false, iterator) -} - -// DescendGreaterThan calls the iterator for every value in the tree within -// the range (pivot, last], until iterator returns false. -func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(descend, nil, pivot, false, false, iterator) -} - -// Descend calls the iterator for every value in the tree within the range -// [last, first], until iterator returns false. -func (t *BTree) Descend(iterator ItemIterator) { - if t.root == nil { - return - } - t.root.iterate(descend, nil, nil, false, false, iterator) -} - -// Get looks for the key item in the tree, returning it. It returns nil if -// unable to find that item. -func (t *BTree) Get(key Item) Item { - if t.root == nil { - return nil - } - return t.root.get(key) -} - -// Min returns the smallest item in the tree, or nil if the tree is empty. -func (t *BTree) Min() Item { - return min(t.root) -} - -// Max returns the largest item in the tree, or nil if the tree is empty. -func (t *BTree) Max() Item { - return max(t.root) -} - -// Has returns true if the given key is in the tree. -func (t *BTree) Has(key Item) bool { - return t.Get(key) != nil -} - -// Len returns the number of items currently in the tree. -func (t *BTree) Len() int { - return t.length -} - -// Clear removes all items from the btree. If addNodesToFreelist is true, -// t's nodes are added to its freelist as part of this call, until the freelist -// is full. Otherwise, the root node is simply dereferenced and the subtree -// left to Go's normal GC processes. -// -// This can be much faster -// than calling Delete on all elements, because that requires finding/removing -// each element in the tree and updating the tree accordingly. It also is -// somewhat faster than creating a new tree to replace the old one, because -// nodes from the old tree are reclaimed into the freelist for use by the new -// one, instead of being lost to the garbage collector. -// -// This call takes: -// O(1): when addNodesToFreelist is false, this is a single operation. -// O(1): when the freelist is already full, it breaks out immediately -// O(freelist size): when the freelist is empty and the nodes are all owned -// by this tree, nodes are added to the freelist until full. -// O(tree size): when all nodes are owned by another tree, all nodes are -// iterated over looking for nodes to add to the freelist, and due to -// ownership, none are. -func (t *BTree) Clear(addNodesToFreelist bool) { - if t.root != nil && addNodesToFreelist { - t.root.reset(t.cow) - } - t.root, t.length = nil, 0 -} - -// reset returns a subtree to the freelist. It breaks out immediately if the -// freelist is full, since the only benefit of iterating is to fill that -// freelist up. Returns true if parent reset call should continue. -func (n *node) reset(c *copyOnWriteContext) bool { - for _, child := range n.children { - if !child.reset(c) { - return false - } - } - return c.freeNode(n) != ftFreelistFull -} - -// Int implements the Item interface for integers. -type Int int - -// Less returns true if int(a) < int(b). -func (a Int) Less(b Item) bool { - return a < b.(Int) -} |