diff options
Diffstat (limited to 'asm/lib.rs')
-rw-r--r-- | asm/lib.rs | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/asm/lib.rs b/asm/lib.rs new file mode 100644 index 0000000..95e05a2 --- /dev/null +++ b/asm/lib.rs @@ -0,0 +1,133 @@ +//! FFI shim around the inline assembly in `inline.rs`. +//! +//! We use this file to precompile some assembly stubs into the static libraries you can find in +//! `bin`. Apps using the `cortex-m` crate then link against those static libraries and don't need +//! to build this file themselves. +//! +//! Nowadays the assembly stubs are no longer actual assembly files, but actually just this small +//! Rust crate that uses unstable inline assembly, coupled with the `xtask` tool to invoke rustc +//! and build the files. +//! +//! Precompiling this to a static lib allows users to call assembly routines from stable Rust, but +//! also perform [linker plugin LTO] with the precompiled artifacts to completely inline the +//! assembly routines into their code, which brings the "outline assembly" on par with "real" inline +//! assembly. +//! +//! For developers and contributors to `cortex-m`, this setup means that they don't have to install +//! any binutils, assembler, or C compiler to hack on the crate. All they need is to run `cargo +//! xtask assemble` to rebuild the archives from this file. +//! +//! Cool, right? +//! +//! # Rust version management +//! +//! Since inline assembly is still unstable, and we want to ensure that the created blobs are +//! up-to-date in CI, we have to pin the nightly version we use for this. The nightly toolchain is +//! stored in `asm-toolchain`. +//! +//! The `cargo xtask` automation will automatically install the `asm-toolchain` as well as all +//! Cortex-M targets needed to generate the blobs. +//! +//! [linker plugin LTO]: https://doc.rust-lang.org/stable/rustc/linker-plugin-lto.html + +#![feature(asm)] +#![no_std] +#![crate_type = "staticlib"] +#![deny(warnings)] + +mod inline; + +macro_rules! shims { + ( + $( fn $name:ident( $($arg:ident: $argty:ty),* ) $(-> $ret:ty)?; )+ + ) => { + $( + #[no_mangle] + pub unsafe extern "C" fn $name( + $($arg: $argty),* + ) $(-> $ret)? { + crate::inline::$name($($arg)*) + } + )+ + }; +} + +shims! { + fn __bkpt(); + fn __control_r() -> u32; + fn __control_w(w: u32); + fn __cpsid(); + fn __cpsie(); + fn __delay(cyc: u32); + fn __dmb(); + fn __isb(); + fn __msp_r() -> u32; + fn __msp_w(val: u32); + fn __nop(); + fn __primask_r() -> u32; + fn __psp_r() -> u32; + fn __psp_w(val: u32); + fn __sev(); + fn __udf(); + fn __wfe(); + fn __wfi(); +} + +#[cfg(armv7m)] +shims! { + fn __basepri_max(val: u8); + fn __basepri_r() -> u8; + fn __basepri_w(val: u8); + fn __faultmask_r() -> u32; + fn __enable_icache(); + fn __enable_dcache(); +} + +#[cfg(armv7em)] +shims! { + fn __basepri_max_cm7_r0p1(val: u8); + fn __basepri_w_cm7_r0p1(val: u8); +} + +// Baseline and Mainline. +#[cfg(armv8m)] +shims! { + fn __tt(target: u32) -> u32; + fn __ttt(target: u32) -> u32; + fn __tta(target: u32) -> u32; + fn __ttat(target: u32) -> u32; +} + +// Mainline only. +#[cfg(armv8m_main)] +shims! { + fn __msplim_r() -> u32; + fn __msplim_w(val: u32); + fn __psplim_r() -> u32; + fn __psplim_w(val: u32); +} + +// All targets with FPU. +#[cfg(has_fpu)] +shims! { + fn __fpscr_r() -> u32; + fn __fpscr_w(val: u32); +} + +/// We *must* define a panic handler here, even though nothing here should ever be able to panic. +/// +/// We prove that nothing will ever panic by calling a function that doesn't exist. If the panic +/// handler gets linked in, this causes a linker error. We always build this file with optimizations +/// enabled, but even without them the panic handler should never be linked in. +#[panic_handler] +fn panic(_: &core::panic::PanicInfo) -> ! { + extern "C" { + #[link_name = "cortex-m internal error: panic handler not optimized out, please file an \ + issue at https://github.com/rust-embedded/cortex-m"] + fn __cortex_m_should_not_panic() -> !; + } + + unsafe { + __cortex_m_should_not_panic(); + } +} |