1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
//! Core peripherals
//!
//! # References
//!
//! - ARMv7-M Architecture Reference Manual (Issue E.b) - Chapter B3
use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::ptr;
use volatile_register::{RO, RW, WO};
use interrupt::{CriticalSection, Nr};
#[cfg(test)]
mod test;
/// CPUID
pub const CPUID: Peripheral<Cpuid> = unsafe { Peripheral::new(0xE000_ED00) };
/// Debug Control Block
pub const DCB: Peripheral<Dcb> = unsafe { Peripheral::new(0xE000_EDF0) };
/// Data Watchpoint and Trace unit
pub const DWT: Peripheral<Dwt> = unsafe { Peripheral::new(0xE000_1000) };
/// Flash Patch and Breakpoint unit
pub const FPB: Peripheral<Fpb> = unsafe { Peripheral::new(0xE000_2000) };
/// Floating Point Unit
pub const FPU: Peripheral<Fpu> = unsafe { Peripheral::new(0xE000_EF30) };
/// Instrumentation Trace Macrocell
pub const ITM: Peripheral<Itm> = unsafe { Peripheral::new(0xE000_0000) };
/// Memory Protection Unit
pub const MPU: Peripheral<Mpu> = unsafe { Peripheral::new(0xE000_ED90) };
/// Nested Vector Interrupt Controller
pub const NVIC: Peripheral<Nvic> = unsafe { Peripheral::new(0xE000_E100) };
/// System Control Block
pub const SCB: Peripheral<Scb> = unsafe { Peripheral::new(0xE000_ED04) };
/// SysTick: System Timer
pub const SYST: Peripheral<Syst> = unsafe { Peripheral::new(0xE000_E010) };
/// Trace Port Interface Unit;
pub const TPIU: Peripheral<Tpiu> = unsafe { Peripheral::new(0xE004_0000) };
// TODO stand-alone registers: ICTR, ACTLR and STIR
/// A peripheral
pub struct Peripheral<T>
where
T: 'static,
{
address: usize,
_marker: PhantomData<&'static mut T>,
}
impl<T> Peripheral<T> {
/// Creates a new peripheral
///
/// `address` is the base address of the register block
pub const unsafe fn new(address: usize) -> Self {
Peripheral {
address: address,
_marker: PhantomData,
}
}
/// Borrows the peripheral for the duration of a critical section
pub fn borrow<'cs>(&self, _ctxt: &'cs CriticalSection) -> &'cs T {
unsafe { &*self.get() }
}
/// Returns a pointer to the register block
pub fn get(&self) -> *mut T {
self.address as *mut T
}
}
/// CPUID register block
#[repr(C)]
pub struct Cpuid {
/// CPUID base
pub base: RO<u32>,
reserved0: [u32; 15],
/// Processor Feature
pub pfr: [RO<u32>; 2],
/// Debug Feature
pub dfr: RO<u32>,
/// Auxiliary Feature
pub afr: RO<u32>,
/// Memory Model Feature
pub mmfr: [RO<u32>; 4],
/// Instruction Set Attribute
pub isar: [RO<u32>; 5],
reserved1: u32,
/// Cache Level ID
pub clidr: RO<u32>,
/// Cache Type
pub ctr: RO<u32>,
/// Cache Size ID
pub ccsidr: RO<u32>,
/// Cache Size Selection
pub csselr: RO<u32>,
}
/// DCB register block
#[repr(C)]
pub struct Dcb {
/// Debug Halting Control and Status
pub dhcsr: RW<u32>,
/// Debug Core Register Selector
pub dcrsr: WO<u32>,
/// Debug Core Register Data
pub dcrdr: RW<u32>,
/// Debug Exception and Monitor Control
pub demcr: RW<u32>,
}
/// DWT register block
#[repr(C)]
pub struct Dwt {
/// Control
pub ctrl: RW<u32>,
/// Cycle Count
pub cyccnt: RW<u32>,
/// CPI Count
pub cpicnt: RW<u32>,
/// Exception Overhead Count
pub exccnt: RW<u32>,
/// Sleep Count
pub sleepcnt: RW<u32>,
/// LSU Count
pub lsucnt: RW<u32>,
/// Folded-instruction Count
pub foldcnt: RW<u32>,
/// Program Counter Sample
pub pcsr: RO<u32>,
/// Comparators
pub c: [Comparator; 16],
reserved: [u32; 932],
/// Lock Access
pub lar: WO<u32>,
/// Lock Status
pub lsr: RO<u32>,
}
/// Comparator
#[repr(C)]
pub struct Comparator {
/// Comparator
pub comp: RW<u32>,
/// Comparator Mask
pub mask: RW<u32>,
/// Comparator Function
pub function: RW<u32>,
reserved: u32,
}
/// FPB register block
#[repr(C)]
pub struct Fpb {
/// Control
pub ctrl: RW<u32>,
/// Remap
pub remap: RW<u32>,
/// Comparator
pub comp: [RW<u32>; 127],
reserved: [u32; 875],
/// Lock Access
pub lar: WO<u32>,
/// Lock Status
pub lsr: RO<u32>,
}
/// FPU register block
#[repr(C)]
pub struct Fpu {
reserved: u32,
/// Floating Point Context Control
pub fpccr: RW<u32>,
/// Floating Point Context Address
pub fpcar: RW<u32>,
/// Floating Point Default Status Control
pub fpdscr: RW<u32>,
/// Media and FP Feature
pub mvfr: [RO<u32>; 3],
}
/// ITM register block
#[repr(C)]
pub struct Itm {
/// Stimulus Port
pub stim: [Stim; 256],
reserved0: [u32; 640],
/// Trace Enable
pub ter: [RW<u32>; 8],
reserved1: [u32; 8],
/// Trace Privilege
pub tpr: RW<u32>,
reserved2: [u32; 15],
/// Trace Control
pub tcr: RW<u32>,
reserved3: [u32; 75],
/// Lock Access
pub lar: WO<u32>,
/// Lock Status
pub lsr: RO<u32>,
}
/// Stimulus Port
pub struct Stim {
register: UnsafeCell<u32>,
}
impl Stim {
/// Writes an `u8` payload into the stimulus port
pub fn write_u8(&self, value: u8) {
unsafe { ptr::write_volatile(self.register.get() as *mut u8, value) }
}
/// Writes an `u16` payload into the stimulus port
pub fn write_u16(&self, value: u16) {
unsafe { ptr::write_volatile(self.register.get() as *mut u16, value) }
}
/// Writes an `u32` payload into the stimulus port
pub fn write_u32(&self, value: u32) {
unsafe { ptr::write_volatile(self.register.get(), value) }
}
/// Returns `true` if the stimulus port is ready to accept more data
pub fn is_fifo_ready(&self) -> bool {
unsafe { ptr::read_volatile(self.register.get()) == 1 }
}
}
/// MPU register block
#[repr(C)]
pub struct Mpu {
/// Type
pub _type: RO<u32>,
/// Control
pub ctrl: RW<u32>,
/// Region Number
pub rnr: RW<u32>,
/// Region Base Address
pub rbar: RW<u32>,
/// Region Attribute and Size
pub rasr: RW<u32>,
/// Alias 1 of RBAR
pub rbar_a1: RW<u32>,
/// Alias 1 of RSAR
pub rsar_a1: RW<u32>,
/// Alias 2 of RBAR
pub rbar_a2: RW<u32>,
/// Alias 2 of RSAR
pub rsar_a2: RW<u32>,
/// Alias 3 of RBAR
pub rbar_a3: RW<u32>,
/// Alias 3 of RSAR
pub rsar_a3: RW<u32>,
}
/// NVIC register block
#[repr(C)]
pub struct Nvic {
/// Interrupt Set-Enable
pub iser: [RW<u32>; 8],
reserved0: [u32; 24],
/// Interrupt Clear-Enable
pub icer: [RW<u32>; 8],
reserved1: [u32; 24],
/// Interrupt Set-Pending
pub ispr: [RW<u32>; 8],
reserved2: [u32; 24],
/// Interrupt Clear-Pending
pub icpr: [RW<u32>; 8],
reserved3: [u32; 24],
/// Interrupt Active Bit
pub iabr: [RO<u32>; 8],
reserved4: [u32; 56],
/// Interrupt Priority
pub ipr: [RW<u8>; 240],
}
impl Nvic {
/// Clears `interrupt`'s pending state
pub fn clear_pending<I>(&self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Disables `interrupt`
pub fn disable<I>(&self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Enables `interrupt`
pub fn enable<I>(&self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.iser[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Gets the "priority" of `interrupt`
///
/// NOTE NVIC encodes priority in the highest bits of a byte so values like
/// `1` and `2` have the same priority. Also for NVIC priorities, a lower
/// value (e.g. `16`) has higher priority than a larger value (e.g. `32`).
pub fn get_priority<I>(&self, interrupt: I) -> u8
where
I: Nr,
{
let nr = interrupt.nr();
self.ipr[usize::from(nr)].read()
}
/// Is `interrupt` active or pre-empted and stacked
pub fn is_active<I>(&self, interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
(self.iabr[usize::from(nr / 32)].read() & mask) == mask
}
/// Checks if `interrupt` is enabled
pub fn is_enabled<I>(&self, interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
(self.iser[usize::from(nr / 32)].read() & mask) == mask
}
/// Checks if `interrupt` is pending
pub fn is_pending<I>(&self, interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
(self.ispr[usize::from(nr / 32)].read() & mask) == mask
}
/// Forces `interrupt` into pending state
pub fn set_pending<I>(&self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Sets the "priority" of `interrupt` to `prio`
///
/// NOTE See `get_priority` method for an explanation of how NVIC priorities
/// work.
pub unsafe fn set_priority<I>(&self, interrupt: I, prio: u8)
where
I: Nr,
{
let nr = interrupt.nr();
self.ipr[usize::from(nr)].write(prio)
}
}
/// SCB register block
#[repr(C)]
pub struct Scb {
/// Interrupt Control and State
pub icsr: RW<u32>,
/// Vector Table Offset
pub vtor: RW<u32>,
/// Application Interrupt and Reset Control
pub aircr: RW<u32>,
/// System Control
pub scr: RW<u32>,
/// Configuration and Control
pub ccr: RW<u32>,
/// System Handler Priority
pub shpr: [RW<u8>; 12],
/// System Handler Control and State
pub shpcrs: RW<u32>,
/// Configurable Fault Status
pub cfsr: RW<u32>,
/// HardFault Status
pub hfsr: RW<u32>,
/// Debug Fault Status
pub dfsr: RW<u32>,
/// MemManage Fault Address
pub mmar: RW<u32>,
/// BusFault Address
pub bfar: RW<u32>,
/// Auxiliary Fault Status
pub afsr: RW<u32>,
reserved: [u32; 18],
/// Coprocessor Access Control
pub cpacr: RW<u32>,
}
/// FPU access mode
pub enum FpuAccessMode {
/// FPU is not accessible
Disabled,
/// FPU is accessible in Privileged and User mode
Enabled,
/// FPU is accessible in Privileged mode only
Privileged,
}
const SCB_CPACR_FPU_MASK: u32 = 0x00780000;
const SCB_CPACR_FPU_ENABLE: u32 = 0x00280000;
const SCB_CPACR_FPU_USER: u32 = 0x00500000;
impl Scb {
/// Gets FPU access mode
pub fn fpu_access_mode(&self) -> FpuAccessMode {
let cpacr = self.cpacr.read();
if cpacr & (SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER) != 0 {
FpuAccessMode::Enabled
} else if cpacr & SCB_CPACR_FPU_ENABLE != 0 {
FpuAccessMode::Privileged
} else {
FpuAccessMode::Disabled
}
}
/// Sets FPU access mode
pub fn set_fpu_access_mode(&self, mode: FpuAccessMode) {
let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
match mode {
FpuAccessMode::Disabled => (),
FpuAccessMode::Privileged =>
cpacr |= SCB_CPACR_FPU_ENABLE,
FpuAccessMode::Enabled =>
cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
}
unsafe { self.cpacr.write(cpacr) }
}
/// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
pub fn enable_fpu(&self) {
self.set_fpu_access_mode(FpuAccessMode::Enabled)
}
/// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
pub fn disable_fpu(&self) {
self.set_fpu_access_mode(FpuAccessMode::Disabled)
}
}
/// SysTick register block
#[repr(C)]
pub struct Syst {
/// Control and Status
pub csr: RW<u32>,
/// Reload Value
pub rvr: RW<u32>,
/// Current Value
pub cvr: RW<u32>,
/// Calibration Value
pub calib: RO<u32>,
}
/// SysTick clock source
pub enum SystClkSource {
/// Core-provided clock
Core,
/// External reference clock
External
}
const SYST_COUNTER_MASK: u32 = 0x00ffffff;
const SYST_CSR_ENABLE: u32 = 1 << 0;
const SYST_CSR_TICKINT: u32 = 1 << 1;
const SYST_CSR_CLKSOURCE: u32 = 1 << 2;
const SYST_CSR_COUNTFLAG: u32 = 1 << 16;
const SYST_CALIB_SKEW: u32 = 1 << 30;
const SYST_CALIB_NOREF: u32 = 1 << 31;
impl Syst {
/// Checks if counter is enabled
pub fn is_counter_enabled(&self) -> bool {
self.csr.read() & SYST_CSR_ENABLE != 0
}
/// Enables counter
pub fn enable_counter(&self) {
unsafe { self.csr.modify(|v| v | SYST_CSR_ENABLE) }
}
/// Disables counter
pub fn disable_counter(&self) {
unsafe { self.csr.modify(|v| v & !SYST_CSR_ENABLE) }
}
/// Checks if SysTick interrupt is enabled
pub fn is_interrupt_enabled(&self) -> bool {
self.csr.read() & SYST_CSR_TICKINT != 0
}
/// Enables SysTick interrupt
pub fn enable_interrupt(&self) {
unsafe { self.csr.modify(|v| v | SYST_CSR_TICKINT) }
}
/// Disables SysTick interrupt
pub fn disable_interrupt(&self) {
unsafe { self.csr.modify(|v| v & !SYST_CSR_TICKINT) }
}
/// Gets clock source
pub fn get_clock_source(&self) -> SystClkSource {
let clk_source_bit = self.csr.read() & SYST_CSR_CLKSOURCE != 0;
match clk_source_bit {
false => SystClkSource::External,
true => SystClkSource::Core
}
}
/// Sets clock source
pub fn set_clock_source(&self, clk_source: SystClkSource) {
match clk_source {
SystClkSource::External =>
unsafe { self.csr.modify(|v| v & !SYST_CSR_CLKSOURCE) },
SystClkSource::Core =>
unsafe { self.csr.modify(|v| v | SYST_CSR_CLKSOURCE) }
}
}
/// Checks if the counter wrapped (underflowed) since the last check
pub fn has_wrapped(&self) -> bool {
self.csr.read() & SYST_CSR_COUNTFLAG != 0
}
/// Gets reload value
pub fn get_reload(&self) -> u32 {
self.rvr.read()
}
/// Sets reload value
///
/// Valid values are between `1` and `0x00ffffff`.
pub fn set_reload(&self, value: u32) {
unsafe { self.rvr.write(value) }
}
/// Gets current value
pub fn get_current(&self) -> u32 {
self.cvr.read()
}
/// Clears current value to 0
///
/// After calling `clear_current()`, the next call to `has_wrapped()`
/// will return `false`.
pub fn clear_current(&self) {
unsafe { self.cvr.write(0) }
}
/// Returns the reload value with which the counter would wrap once per 10 ms
///
/// Returns `0` if the value is not known (e.g. because the clock can
/// change dynamically).
pub fn get_ticks_per_10ms(&self) -> u32 {
self.calib.read() & SYST_COUNTER_MASK
}
/// Checks if the calibration value is precise
///
/// Returns `false` if using the reload value returned by `get_ticks_per_10ms()`
/// may result in a period significantly deviating from 10 ms.
pub fn is_precise(&self) -> bool {
self.calib.read() & SYST_CALIB_SKEW == 0
}
/// Checks if an external reference clock is available
pub fn has_reference_clock(&self) -> bool {
self.calib.read() & SYST_CALIB_NOREF == 0
}
}
/// TPIU register block
#[repr(C)]
pub struct Tpiu {
/// Supported Parallel Port Sizes
pub sspsr: RO<u32>,
/// Current Parallel Port Size
pub cspsr: RW<u32>,
reserved0: [u32; 2],
/// Asynchronous Clock Prescaler
pub acpr: RW<u32>,
reserved1: [u32; 55],
/// Selected Pin Control
pub sppr: RW<u32>,
reserved2: [u32; 943],
/// Lock Access
pub lar: WO<u32>,
/// Lock Status
pub lsr: RO<u32>,
reserved3: [u32; 4],
/// TPIU Type
pub _type: RO<u32>,
}
|