aboutsummaryrefslogtreecommitdiff
path: root/src/peripheral/mod.rs
blob: ad8be319c6af7cfde7c685f9476a5079ce7048b5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
//! Core peripherals
//!
//! # References
//!
//! - ARMv7-M Architecture Reference Manual (Issue E.b) - Chapter B3

use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::ptr;

use volatile_register::{RO, RW, WO};

use interrupt::{CriticalSection, Nr};

#[cfg(test)]
mod test;

/// CPUID
pub const CPUID: Peripheral<Cpuid> = unsafe { Peripheral::new(0xE000_ED00) };

/// Debug Control Block
pub const DCB: Peripheral<Dcb> = unsafe { Peripheral::new(0xE000_EDF0) };

/// Data Watchpoint and Trace unit
pub const DWT: Peripheral<Dwt> = unsafe { Peripheral::new(0xE000_1000) };

/// Flash Patch and Breakpoint unit
pub const FPB: Peripheral<Fpb> = unsafe { Peripheral::new(0xE000_2000) };

/// Floating Point Unit
pub const FPU: Peripheral<Fpu> = unsafe { Peripheral::new(0xE000_EF30) };

/// Instrumentation Trace Macrocell
pub const ITM: Peripheral<Itm> = unsafe { Peripheral::new(0xE000_0000) };

/// Memory Protection Unit
pub const MPU: Peripheral<Mpu> = unsafe { Peripheral::new(0xE000_ED90) };

/// Nested Vector Interrupt Controller
pub const NVIC: Peripheral<Nvic> = unsafe { Peripheral::new(0xE000_E100) };

/// System Control Block
pub const SCB: Peripheral<Scb> = unsafe { Peripheral::new(0xE000_ED04) };

/// SysTick: System Timer
pub const SYST: Peripheral<Syst> = unsafe { Peripheral::new(0xE000_E010) };

/// Trace Port Interface Unit;
pub const TPIU: Peripheral<Tpiu> = unsafe { Peripheral::new(0xE004_0000) };

/// Cache and branch predictor maintenance operations
#[cfg(armv7m)]
pub const CBP: Peripheral<Cbp> = unsafe { Peripheral::new(0xE000_EF50) };

// TODO stand-alone registers: ICTR, ACTLR and STIR

/// A peripheral
#[derive(Debug)]
pub struct Peripheral<T>
where
    T: 'static,
{
    address: usize,
    _marker: PhantomData<&'static mut T>,
}

impl<T> Peripheral<T> {
    /// Creates a new peripheral
    ///
    /// `address` is the base address of the register block
    pub const unsafe fn new(address: usize) -> Self {
        Peripheral {
            address: address,
            _marker: PhantomData,
        }
    }

    /// Borrows the peripheral for the duration of a critical section
    pub fn borrow<'cs>(&self, _ctxt: &'cs CriticalSection) -> &'cs T {
        unsafe { &*self.get() }
    }

    /// Returns a pointer to the register block
    pub fn get(&self) -> *mut T {
        self.address as *mut T
    }
}

/// CPUID register block
#[repr(C)]
pub struct Cpuid {
    /// CPUID base
    pub base: RO<u32>,
    reserved0: [u32; 15],
    /// Processor Feature
    pub pfr: [RO<u32>; 2],
    /// Debug Feature
    pub dfr: RO<u32>,
    /// Auxiliary Feature
    pub afr: RO<u32>,
    /// Memory Model Feature
    pub mmfr: [RO<u32>; 4],
    /// Instruction Set Attribute
    pub isar: [RO<u32>; 5],
    reserved1: u32,
    /// Cache Level ID
    pub clidr: RO<u32>,
    /// Cache Type
    pub ctr: RO<u32>,
    /// Cache Size ID
    pub ccsidr: RO<u32>,
    /// Cache Size Selection
    pub csselr: RW<u32>,
}

const CSSELR_IND_POS: u32 = 0;
const CSSELR_IND_MASK: u32 = 1 << CSSELR_IND_POS;
const CSSELR_LEVEL_POS: u32 = 1;
const CSSELR_LEVEL_MASK: u32 = 0x7 << CSSELR_LEVEL_POS;
const CCSIDR_NUMSETS_POS: u32 = 13;
const CCSIDR_NUMSETS_MASK: u32 = 0x7FFF << CCSIDR_NUMSETS_POS;
const CCSIDR_ASSOCIATIVITY_POS: u32 = 3;
const CCSIDR_ASSOCIATIVITY_MASK: u32 = 0x3FF << CCSIDR_ASSOCIATIVITY_POS;

/// Type of cache to select on CSSELR writes.
#[cfg(armv7m)]
pub enum CsselrCacheType {
    /// Select DCache or unified cache
    DataOrUnified = 0,
    /// Select ICache
    Instruction = 1,
}

#[cfg(armv7m)]
impl Cpuid {
    /// Selects the current CCSIDR
    ///
    /// * `level`: the required cache level minus 1, e.g. 0 for L1, 1 for L2
    /// * `ind`: select instruction cache or data/unified cache
    ///
    /// `level` is masked to be between 0 and 7.
    pub fn select_cache(&self, level: u8, ind: CsselrCacheType) {
        unsafe { self.csselr.write(
            (((level as u32) << CSSELR_LEVEL_POS) & CSSELR_LEVEL_MASK) |
            (((ind   as u32) <<   CSSELR_IND_POS) &   CSSELR_IND_MASK)
        )}
    }

    /// Returns the number of sets and ways in the selected cache
    pub fn cache_num_sets_ways(&self, level: u8, ind: CsselrCacheType) -> (u16, u16) {
        self.select_cache(level, ind);
        ::asm::dsb();
        let ccsidr = self.ccsidr.read();
        ((1 + ((ccsidr & CCSIDR_NUMSETS_MASK) >> CCSIDR_NUMSETS_POS)) as u16,
         (1 + ((ccsidr & CCSIDR_ASSOCIATIVITY_MASK) >> CCSIDR_ASSOCIATIVITY_POS)) as u16)
    }
}

/// DCB register block
#[repr(C)]
pub struct Dcb {
    /// Debug Halting Control and Status
    pub dhcsr: RW<u32>,
    /// Debug Core Register Selector
    pub dcrsr: WO<u32>,
    /// Debug Core Register Data
    pub dcrdr: RW<u32>,
    /// Debug Exception and Monitor Control
    pub demcr: RW<u32>,
}

/// DWT register block
#[repr(C)]
pub struct Dwt {
    /// Control
    pub ctrl: RW<u32>,
    /// Cycle Count
    pub cyccnt: RW<u32>,
    /// CPI Count
    pub cpicnt: RW<u32>,
    /// Exception Overhead Count
    pub exccnt: RW<u32>,
    /// Sleep Count
    pub sleepcnt: RW<u32>,
    /// LSU Count
    pub lsucnt: RW<u32>,
    /// Folded-instruction Count
    pub foldcnt: RW<u32>,
    /// Program Counter Sample
    pub pcsr: RO<u32>,
    /// Comparators
    pub c: [Comparator; 16],
    reserved: [u32; 932],
    /// Lock Access
    pub lar: WO<u32>,
    /// Lock Status
    pub lsr: RO<u32>,
}

impl Dwt {
    /// Enables the cycle counter
    pub fn enable_cycle_counter(&self) {
        unsafe { self.ctrl.modify(|r| r | 1) }
    }
}

/// Comparator
#[repr(C)]
pub struct Comparator {
    /// Comparator
    pub comp: RW<u32>,
    /// Comparator Mask
    pub mask: RW<u32>,
    /// Comparator Function
    pub function: RW<u32>,
    reserved: u32,
}

/// FPB register block
#[repr(C)]
pub struct Fpb {
    /// Control
    pub ctrl: RW<u32>,
    /// Remap
    pub remap: RW<u32>,
    /// Comparator
    pub comp: [RW<u32>; 127],
    reserved: [u32; 875],
    /// Lock Access
    pub lar: WO<u32>,
    /// Lock Status
    pub lsr: RO<u32>,
}

/// FPU register block
#[repr(C)]
pub struct Fpu {
    reserved: u32,
    /// Floating Point Context Control
    pub fpccr: RW<u32>,
    /// Floating Point Context Address
    pub fpcar: RW<u32>,
    /// Floating Point Default Status Control
    pub fpdscr: RW<u32>,
    /// Media and FP Feature
    pub mvfr: [RO<u32>; 3],
}

/// ITM register block
#[repr(C)]
pub struct Itm {
    /// Stimulus Port
    pub stim: [Stim; 256],
    reserved0: [u32; 640],
    /// Trace Enable
    pub ter: [RW<u32>; 8],
    reserved1: [u32; 8],
    /// Trace Privilege
    pub tpr: RW<u32>,
    reserved2: [u32; 15],
    /// Trace Control
    pub tcr: RW<u32>,
    reserved3: [u32; 75],
    /// Lock Access
    pub lar: WO<u32>,
    /// Lock Status
    pub lsr: RO<u32>,
}

/// Stimulus Port
pub struct Stim {
    register: UnsafeCell<u32>,
}

impl Stim {
    /// Writes an `u8` payload into the stimulus port
    pub fn write_u8(&self, value: u8) {
        unsafe { ptr::write_volatile(self.register.get() as *mut u8, value) }
    }

    /// Writes an `u16` payload into the stimulus port
    pub fn write_u16(&self, value: u16) {
        unsafe { ptr::write_volatile(self.register.get() as *mut u16, value) }
    }

    /// Writes an `u32` payload into the stimulus port
    pub fn write_u32(&self, value: u32) {
        unsafe { ptr::write_volatile(self.register.get(), value) }
    }

    /// Returns `true` if the stimulus port is ready to accept more data
    pub fn is_fifo_ready(&self) -> bool {
        unsafe { ptr::read_volatile(self.register.get()) == 1 }
    }
}

/// MPU register block
#[repr(C)]
pub struct Mpu {
    /// Type
    pub _type: RO<u32>,
    /// Control
    pub ctrl: RW<u32>,
    /// Region Number
    pub rnr: RW<u32>,
    /// Region Base Address
    pub rbar: RW<u32>,
    /// Region Attribute and Size
    pub rasr: RW<u32>,
    /// Alias 1 of RBAR
    pub rbar_a1: RW<u32>,
    /// Alias 1 of RSAR
    pub rsar_a1: RW<u32>,
    /// Alias 2 of RBAR
    pub rbar_a2: RW<u32>,
    /// Alias 2 of RSAR
    pub rsar_a2: RW<u32>,
    /// Alias 3 of RBAR
    pub rbar_a3: RW<u32>,
    /// Alias 3 of RSAR
    pub rsar_a3: RW<u32>,
}

/// NVIC register block
#[repr(C)]
pub struct Nvic {
    /// Interrupt Set-Enable
    pub iser: [RW<u32>; 8],
    reserved0: [u32; 24],
    /// Interrupt Clear-Enable
    pub icer: [RW<u32>; 8],
    reserved1: [u32; 24],
    /// Interrupt Set-Pending
    pub ispr: [RW<u32>; 8],
    reserved2: [u32; 24],
    /// Interrupt Clear-Pending
    pub icpr: [RW<u32>; 8],
    reserved3: [u32; 24],
    /// Interrupt Active Bit
    pub iabr: [RO<u32>; 8],
    reserved4: [u32; 56],
    /// Interrupt Priority
    pub ipr: [RW<u8>; 240],
}

impl Nvic {
    /// Clears `interrupt`'s pending state
    pub fn clear_pending<I>(&self, interrupt: I)
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        unsafe { self.icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Disables `interrupt`
    pub fn disable<I>(&self, interrupt: I)
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        unsafe { self.icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Enables `interrupt`
    pub fn enable<I>(&self, interrupt: I)
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        unsafe { self.iser[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Gets the "priority" of `interrupt`
    ///
    /// NOTE NVIC encodes priority in the highest bits of a byte so values like
    /// `1` and `2` have the same priority. Also for NVIC priorities, a lower
    /// value (e.g. `16`) has higher priority than a larger value (e.g. `32`).
    pub fn get_priority<I>(&self, interrupt: I) -> u8
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        self.ipr[usize::from(nr)].read()
    }

    /// Is `interrupt` active or pre-empted and stacked
    pub fn is_active<I>(&self, interrupt: I) -> bool
    where
        I: Nr,
    {
        let nr = interrupt.nr();
        let mask = 1 << (nr % 32);

        (self.iabr[usize::from(nr / 32)].read() & mask) == mask
    }

    /// Checks if `interrupt` is enabled
    pub fn is_enabled<I>(&self, interrupt: I) -> bool
    where
        I: Nr,
    {
        let nr = interrupt.nr();
        let mask = 1 << (nr % 32);

        (self.iser[usize::from(nr / 32)].read() & mask) == mask
    }

    /// Checks if `interrupt` is pending
    pub fn is_pending<I>(&self, interrupt: I) -> bool
    where
        I: Nr,
    {
        let nr = interrupt.nr();
        let mask = 1 << (nr % 32);

        (self.ispr[usize::from(nr / 32)].read() & mask) == mask
    }

    /// Forces `interrupt` into pending state
    pub fn set_pending<I>(&self, interrupt: I)
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        unsafe { self.ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Sets the "priority" of `interrupt` to `prio`
    ///
    /// NOTE See `get_priority` method for an explanation of how NVIC priorities
    /// work.
    pub unsafe fn set_priority<I>(&self, interrupt: I, prio: u8)
    where
        I: Nr,
    {
        let nr = interrupt.nr();

        self.ipr[usize::from(nr)].write(prio)
    }
}

/// SCB register block
#[repr(C)]
pub struct Scb {
    /// Interrupt Control and State
    pub icsr: RW<u32>,
    /// Vector Table Offset
    pub vtor: RW<u32>,
    /// Application Interrupt and Reset Control
    pub aircr: RW<u32>,
    /// System Control
    pub scr: RW<u32>,
    /// Configuration and Control
    pub ccr: RW<u32>,
    /// System Handler Priority
    pub shpr: [RW<u8>; 12],
    /// System Handler Control and State
    pub shpcrs: RW<u32>,
    /// Configurable Fault Status
    pub cfsr: RW<u32>,
    /// HardFault Status
    pub hfsr: RW<u32>,
    /// Debug Fault Status
    pub dfsr: RW<u32>,
    /// MemManage Fault Address
    pub mmar: RW<u32>,
    /// BusFault Address
    pub bfar: RW<u32>,
    /// Auxiliary Fault Status
    pub afsr: RW<u32>,
    reserved: [u32; 18],
    /// Coprocessor Access Control
    pub cpacr: RW<u32>,
}

/// FPU access mode
#[derive(Clone, Copy, Debug)]
pub enum FpuAccessMode {
    /// FPU is not accessible
    Disabled,
    /// FPU is accessible in Privileged and User mode
    Enabled,
    /// FPU is accessible in Privileged mode only
    Privileged,
}

const SCB_CCR_IC_MASK: u32 = (1<<17);
const SCB_CCR_DC_MASK: u32 = (1<<16);

const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20;
const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;

impl Scb {
    /// Gets FPU access mode
    pub fn fpu_access_mode(&self) -> FpuAccessMode {
        let cpacr = self.cpacr.read();
        if cpacr & SCB_CPACR_FPU_MASK ==
            SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER
        {
            FpuAccessMode::Enabled
        } else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE {
            FpuAccessMode::Privileged
        } else {
            FpuAccessMode::Disabled
        }
    }

    /// Sets FPU access mode
    pub fn set_fpu_access_mode(&self, mode: FpuAccessMode) {
        let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
        match mode {
            FpuAccessMode::Disabled => (),
            FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE,
            FpuAccessMode::Enabled => {
                cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER
            }
        }
        unsafe { self.cpacr.write(cpacr) }
    }

    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
    pub fn enable_fpu(&self) {
        self.set_fpu_access_mode(FpuAccessMode::Enabled)
    }

    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
    pub fn disable_fpu(&self) {
        self.set_fpu_access_mode(FpuAccessMode::Disabled)
    }
}

#[cfg(armv7m)]
impl Scb {
    /// Enables I-Cache if currently disabled
    #[inline]
    pub fn enable_icache(&self) {
        // Don't do anything if ICache is already enabled
        if self.icache_enabled() {
            return;
        }

        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Invalidate I-Cache
        cbp.iciallu();

        // Enable I-Cache
        unsafe { self.ccr.modify(|r| r | SCB_CCR_IC_MASK) };

        ::asm::dsb();
        ::asm::isb();
    }

    /// Disables I-Cache if currently enabled
    #[inline]
    pub fn disable_icache(&self) {
        // Don't do anything if ICache is already disabled
        if !self.icache_enabled() {
            return;
        }

        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Disable I-Cache
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) };

        // Invalidate I-Cache
        cbp.iciallu();

        ::asm::dsb();
        ::asm::isb();
    }

    /// Returns whether the I-Cache is currently enabled
    #[inline]
    pub fn icache_enabled(&self) -> bool {
        ::asm::dsb();
        ::asm::isb();
        self.ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK
    }

    /// Invalidates I-Cache
    #[inline]
    pub fn invalidate_icache(&self) {
        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Invalidate I-Cache
        cbp.iciallu();

        ::asm::dsb();
        ::asm::isb();
    }

    /// Enables D-cache if currently disabled
    #[inline]
    pub fn enable_dcache(&self, cpuid: &Cpuid) {
        // Don't do anything if DCache is already enabled
        if self.dcache_enabled() {
            return;
        }

        // Invalidate anything currently in the DCache
        self.invalidate_dcache(cpuid);

        // Now turn on the DCache
        unsafe { self.ccr.modify(|r| r | SCB_CCR_DC_MASK) };

        ::asm::dsb();
        ::asm::isb();
    }

    /// Disables D-cache if currently enabled
    #[inline]
    pub fn disable_dcache(&self, cpuid: &Cpuid) {
        // Don't do anything if DCache is already disabled
        if !self.dcache_enabled() {
            return;
        }

        // Turn off the DCache
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) };

        // Clean and invalidate whatever was left in it
        self.clean_invalidate_dcache(cpuid);
    }

    /// Returns whether the D-Cache is currently enabled
    #[inline]
    pub fn dcache_enabled(&self) -> bool {
        ::asm::dsb();
        ::asm::isb();
        self.ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK
    }

    /// Invalidates D-cache
    ///
    /// Note that calling this while the dcache is enabled will probably wipe out your
    /// stack, depending on optimisations, breaking returning to the call point.
    /// It's used immediately before enabling the dcache, but not exported publicly.
    #[inline]
    fn invalidate_dcache(&self, cpuid: &Cpuid) {
        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        // Invalidate entire D-Cache
        for set in 0..sets {
            for way in 0..ways {
                cbp.dcisw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans D-cache
    #[inline]
    pub fn clean_dcache(&self, cpuid: &Cpuid) {
        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccsw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans and invalidates D-cache
    #[inline]
    pub fn clean_invalidate_dcache(&self, cpuid: &Cpuid) {
        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccisw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Invalidates D-cache by address
    ///
    /// `addr`: the address to invalidate
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Invalidates cache starting from the lowest 32-byte aligned address represented by `addr`,
    /// in blocks of 32 bytes until at least `size` bytes have been invalidated.
    #[inline]
    pub fn invalidate_dcache_by_address(&self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1)/LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dcimvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans D-cache by address
    ///
    /// `addr`: the address to clean
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Cleans cache starting from the lowest 32-byte aligned address represented by `addr`,
    /// in blocks of 32 bytes until at least `size` bytes have been cleaned.
    #[inline]
    pub fn clean_dcache_by_address(&self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1)/LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dccmvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans and invalidates D-cache by address
    ///
    /// `addr`: the address to clean and invalidate
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Cleans and invalidates cache starting from the lowest 32-byte aligned address represented
    /// by `addr`, in blocks of 32 bytes until at least `size` bytes have been cleaned and
    /// invalidated.
    #[inline]
    pub fn clean_invalidate_dcache_by_address(&self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // All of CBP is write-only so no data races are possible
        let cbp = unsafe { &mut *CBP.get() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1)/LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dccimvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }
}

/// SysTick register block
#[repr(C)]
pub struct Syst {
    /// Control and Status
    pub csr: RW<u32>,
    /// Reload Value
    pub rvr: RW<u32>,
    /// Current Value
    pub cvr: RW<u32>,
    /// Calibration Value
    pub calib: RO<u32>,
}

/// SysTick clock source
#[derive(Clone, Copy, Debug)]
pub enum SystClkSource {
    /// Core-provided clock
    Core,
    /// External reference clock
    External,
}

const SYST_COUNTER_MASK: u32 = 0x00ffffff;

const SYST_CSR_ENABLE: u32 = 1 << 0;
const SYST_CSR_TICKINT: u32 = 1 << 1;
const SYST_CSR_CLKSOURCE: u32 = 1 << 2;
const SYST_CSR_COUNTFLAG: u32 = 1 << 16;

const SYST_CALIB_SKEW: u32 = 1 << 30;
const SYST_CALIB_NOREF: u32 = 1 << 31;

impl Syst {
    /// Checks if counter is enabled
    pub fn is_counter_enabled(&self) -> bool {
        self.csr.read() & SYST_CSR_ENABLE != 0
    }

    /// Enables counter
    pub fn enable_counter(&self) {
        unsafe { self.csr.modify(|v| v | SYST_CSR_ENABLE) }
    }

    /// Disables counter
    pub fn disable_counter(&self) {
        unsafe { self.csr.modify(|v| v & !SYST_CSR_ENABLE) }
    }

    /// Checks if SysTick interrupt is enabled
    pub fn is_interrupt_enabled(&self) -> bool {
        self.csr.read() & SYST_CSR_TICKINT != 0
    }

    /// Enables SysTick interrupt
    pub fn enable_interrupt(&self) {
        unsafe { self.csr.modify(|v| v | SYST_CSR_TICKINT) }
    }

    /// Disables SysTick interrupt
    pub fn disable_interrupt(&self) {
        unsafe { self.csr.modify(|v| v & !SYST_CSR_TICKINT) }
    }

    /// Gets clock source
    pub fn get_clock_source(&self) -> SystClkSource {
        let clk_source_bit = self.csr.read() & SYST_CSR_CLKSOURCE != 0;
        match clk_source_bit {
            false => SystClkSource::External,
            true => SystClkSource::Core,
        }
    }

    /// Sets clock source
    pub fn set_clock_source(&self, clk_source: SystClkSource) {
        match clk_source {
            SystClkSource::External => unsafe {
                self.csr.modify(|v| v & !SYST_CSR_CLKSOURCE)
            },
            SystClkSource::Core => unsafe {
                self.csr.modify(|v| v | SYST_CSR_CLKSOURCE)
            },
        }
    }

    /// Checks if the counter wrapped (underflowed) since the last check
    pub fn has_wrapped(&self) -> bool {
        self.csr.read() & SYST_CSR_COUNTFLAG != 0
    }

    /// Gets reload value
    pub fn get_reload(&self) -> u32 {
        self.rvr.read()
    }

    /// Sets reload value
    ///
    /// Valid values are between `1` and `0x00ffffff`.
    pub fn set_reload(&self, value: u32) {
        unsafe { self.rvr.write(value) }
    }

    /// Gets current value
    pub fn get_current(&self) -> u32 {
        self.cvr.read()
    }

    /// Clears current value to 0
    ///
    /// After calling `clear_current()`, the next call to `has_wrapped()`
    /// will return `false`.
    pub fn clear_current(&self) {
        unsafe { self.cvr.write(0) }
    }

    /// Returns the reload value with which the counter would wrap once per 10
    /// ms
    ///
    /// Returns `0` if the value is not known (e.g. because the clock can
    /// change dynamically).
    pub fn get_ticks_per_10ms(&self) -> u32 {
        self.calib.read() & SYST_COUNTER_MASK
    }

    /// Checks if the calibration value is precise
    ///
    /// Returns `false` if using the reload value returned by
    /// `get_ticks_per_10ms()` may result in a period significantly deviating
    /// from 10 ms.
    pub fn is_precise(&self) -> bool {
        self.calib.read() & SYST_CALIB_SKEW == 0
    }

    /// Checks if an external reference clock is available
    pub fn has_reference_clock(&self) -> bool {
        self.calib.read() & SYST_CALIB_NOREF == 0
    }
}

/// TPIU register block
#[repr(C)]
pub struct Tpiu {
    /// Supported Parallel Port Sizes
    pub sspsr: RO<u32>,
    /// Current Parallel Port Size
    pub cspsr: RW<u32>,
    reserved0: [u32; 2],
    /// Asynchronous Clock Prescaler
    pub acpr: RW<u32>,
    reserved1: [u32; 55],
    /// Selected Pin Control
    pub sppr: RW<u32>,
    reserved2: [u32; 943],
    /// Lock Access
    pub lar: WO<u32>,
    /// Lock Status
    pub lsr: RO<u32>,
    reserved3: [u32; 4],
    /// TPIU Type
    pub _type: RO<u32>,
}

/// Cache and branch predictor maintenance operations register block
#[repr(C)]
#[cfg(armv7m)]
pub struct Cbp {
    /// I-cache invalidate all to PoU
    pub iciallu: WO<u32>,
    reserved0: u32,
    /// I-cache invalidate by MVA to PoU
    pub icimvau: WO<u32>,
    /// D-cache invalidate by MVA to PoC
    pub dcimvac: WO<u32>,
    /// D-cache invalidate by set-way
    pub dcisw: WO<u32>,
    /// D-cache clean by MVA to PoU
    pub dccmvau: WO<u32>,
    /// D-cache clean by MVA to PoC
    pub dccmvac: WO<u32>,
    /// D-cache clean by set-way
    pub dccsw: WO<u32>,
    /// D-cache clean and invalidate by MVA to PoC
    pub dccimvac: WO<u32>,
    /// D-cache clean and invalidate by set-way
    pub dccisw: WO<u32>,
    /// Branch predictor invalidate all
    pub bpiall: WO<u32>,
}

const CBP_SW_WAY_POS: u32 = 30;
const CBP_SW_WAY_MASK: u32 = 0x3 << CBP_SW_WAY_POS;
const CBP_SW_SET_POS: u32 = 5;
const CBP_SW_SET_MASK: u32 = 0x1FF << CBP_SW_SET_POS;

#[cfg(armv7m)]
impl Cbp {
    /// I-cache invalidate all to PoU
    #[inline(always)]
    pub fn iciallu(&self) {
        unsafe { self.iciallu.write(0); }
    }

    /// I-cache invalidate by MVA to PoU
    #[inline(always)]
    pub fn icimvau(&self, mva: u32) {
        unsafe { self.icimvau.write(mva); }
    }

    /// D-cache invalidate by MVA to PoC
    #[inline(always)]
    pub fn dcimvac(&self, mva: u32) {
        unsafe { self.dcimvac.write(mva); }
    }

    /// D-cache invalidate by set-way
    ///
    /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
    #[inline(always)]
    pub fn dcisw(&self, set: u16, way: u16) {
        // The ARMv7-M Architecture Reference Manual, as of Revision E.b, says these set/way
        // operations have a register data format which depends on the implementation's
        // associativity and number of sets. Specifically the 'way' and 'set' fields have
        // offsets 32-log2(ASSOCIATIVITY) and log2(LINELEN) respectively.
        //
        // However, in Cortex-M7 devices, these offsets are fixed at 30 and 5, as per the Cortex-M7
        // Generic User Guide section 4.8.3. Since no other ARMv7-M implementations except the
        // Cortex-M7 have a DCACHE or ICACHE at all, it seems safe to do the same thing as the
        // CMSIS-Core implementation and use fixed values.
        unsafe { self.dcisw.write(
            (((way as u32) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS) |
            (((set as u32) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS));
        }
    }

    /// D-cache clean by MVA to PoU
    #[inline(always)]
    pub fn dccmvau(&self, mva: u32) {
        unsafe { self.dccmvau.write(mva); }
    }

    /// D-cache clean by MVA to PoC
    #[inline(always)]
    pub fn dccmvac(&self, mva: u32) {
        unsafe { self.dccmvac.write(mva); }
    }

    /// D-cache clean by set-way
    ///
    /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
    #[inline(always)]
    pub fn dccsw(&self, set: u16, way: u16) {
        // See comment for dcisw() about the format here
        unsafe { self.dccsw.write(
            (((way as u32) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS) |
            (((set as u32) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS));
        }
    }

    /// D-cache clean and invalidate by MVA to PoC
    #[inline(always)]
    pub fn dccimvac(&self, mva: u32) {
        unsafe { self.dccimvac.write(mva); }
    }

    /// D-cache clean and invalidate by set-way
    ///
    /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
    #[inline(always)]
    pub fn dccisw(&self, set: u16, way: u16) {
        // See comment for dcisw() about the format here
        unsafe { self.dccisw.write(
            (((way as u32) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS) |
            (((set as u32) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS));
        }
    }

    /// Branch predictor invalidate all
    #[inline(always)]
    pub fn bpiall(&self) {
        unsafe { self.bpiall.write(0); }
    }
}