1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
//! Nested Vector Interrupt Controller
use volatile_register::{RO, RW};
use peripheral::NVIC;
use interrupt::Nr;
/// Register block
#[repr(C)]
pub struct RegisterBlock {
/// Interrupt Set-Enable
pub iser: [RW<u32>; 16],
reserved0: [u32; 16],
/// Interrupt Clear-Enable
pub icer: [RW<u32>; 16],
reserved1: [u32; 16],
/// Interrupt Set-Pending
pub ispr: [RW<u32>; 16],
reserved2: [u32; 16],
/// Interrupt Clear-Pending
pub icpr: [RW<u32>; 16],
reserved3: [u32; 16],
/// Interrupt Active Bit
pub iabr: [RO<u32>; 16],
reserved4: [u32; 48],
#[cfg(not(armv6m))]
/// Interrupt Priority
///
/// On ARMv7-M, 124 word-sized registers are available. Each of those
/// contains of 4 interrupt priorities of 8 byte each.The architecture
/// specifically allows accessing those along byte boundaries, so they are
/// represented as 496 byte-sized registers, for convenience, and to allow
/// atomic priority updates.
///
/// On ARMv6-M, the registers must only be accessed along word boundaries,
/// so convenient byte-sized representation wouldn't work on that
/// architecture.
pub ipr: [RW<u8>; 496],
#[cfg(armv6m)]
/// Interrupt Priority
///
/// On ARMv7-M, 124 word-sized registers are available. Each of those
/// contains of 4 interrupt priorities of 8 byte each.The architecture
/// specifically allows accessing those along byte boundaries, so they are
/// represented as 496 byte-sized registers, for convenience, and to allow
/// atomic priority updates.
///
/// On ARMv6-M, the registers must only be accessed along word boundaries,
/// so convenient byte-sized representation wouldn't work on that
/// architecture.
pub ipr: [RW<u32>; 8],
}
impl NVIC {
/// Clears `interrupt`'s pending state
pub fn clear_pending<I>(&mut self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Disables `interrupt`
pub fn disable<I>(&mut self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Enables `interrupt`
pub fn enable<I>(&mut self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.iser[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Returns the NVIC priority of `interrupt`
///
/// *NOTE* NVIC encodes priority in the highest bits of a byte so values like `1` and `2` map
/// to the same priority. Also for NVIC priorities, a lower value (e.g. `16`) has higher
/// priority (urgency) than a larger value (e.g. `32`).
pub fn get_priority<I>(interrupt: I) -> u8
where
I: Nr,
{
#[cfg(not(armv6m))]
{
let nr = interrupt.nr();
// NOTE(unsafe) atomic read with no side effects
unsafe { (*Self::ptr()).ipr[usize::from(nr)].read() }
}
#[cfg(armv6m)]
{
// NOTE(unsafe) atomic read with no side effects
let ipr_n = unsafe { (*Self::ptr()).ipr[Self::ipr_index(&interrupt)].read() };
let prio = (ipr_n >> Self::ipr_shift(&interrupt)) & 0x000000ff;
prio as u8
}
}
/// Is `interrupt` active or pre-empted and stacked
pub fn is_active<I>(interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::ptr()).iabr[usize::from(nr / 32)].read() & mask) == mask }
}
/// Checks if `interrupt` is enabled
pub fn is_enabled<I>(interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::ptr()).iser[usize::from(nr / 32)].read() & mask) == mask }
}
/// Checks if `interrupt` is pending
pub fn is_pending<I>(interrupt: I) -> bool
where
I: Nr,
{
let nr = interrupt.nr();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::ptr()).ispr[usize::from(nr / 32)].read() & mask) == mask }
}
/// Forces `interrupt` into pending state
pub fn set_pending<I>(&mut self, interrupt: I)
where
I: Nr,
{
let nr = interrupt.nr();
unsafe { self.ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Sets the "priority" of `interrupt` to `prio`
///
/// *NOTE* See [`get_priority`](struct.NVIC.html#method.get_priority) method for an explanation
/// of how NVIC priorities work.
///
/// On ARMv6-M, updating an interrupt priority requires a read-modify-write operation. On
/// ARMv7-M, the operation is performed in a single atomic write operation.
pub unsafe fn set_priority<I>(&mut self, interrupt: I, prio: u8)
where
I: Nr,
{
#[cfg(not(armv6m))]
{
let nr = interrupt.nr();
self.ipr[usize::from(nr)].write(prio)
}
#[cfg(armv6m)]
{
self.ipr[Self::ipr_index(&interrupt)].modify(|value| {
let mask = 0x000000ff << Self::ipr_shift(&interrupt);
let prio = u32::from(prio) << Self::ipr_shift(&interrupt);
(value & !mask) | prio
})
}
}
#[cfg(armv6m)]
fn ipr_index<I>(interrupt: &I) -> usize
where
I: Nr,
{
usize::from(interrupt.nr()) / 4
}
#[cfg(armv6m)]
fn ipr_shift<I>(interrupt: &I) -> usize
where
I: Nr,
{
(usize::from(interrupt.nr()) % 4) * 8
}
}
|