1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
use core::{
cell::Cell,
sync::atomic::{AtomicBool, Ordering},
};
pub use crate::tq::{NotReady, TimerQueue};
#[cfg(armv7m)]
pub use cortex_m::register::{basepri, basepri_max};
pub use cortex_m::{
asm::wfi,
interrupt,
peripheral::{scb::SystemHandler, syst::SystClkSource, DWT, NVIC},
Peripherals,
};
use heapless::spsc::{MultiCore, SingleCore};
pub use heapless::{consts, i::Queue as iQueue, spsc::Queue};
pub use heapless::{i::BinaryHeap as iBinaryHeap, BinaryHeap};
#[cfg(feature = "heterogeneous")]
pub use microamp::shared;
pub type MCFQ<N> = Queue<u8, N, u8, MultiCore>;
pub type MCRQ<T, N> = Queue<(T, u8), N, u8, MultiCore>;
pub type SCFQ<N> = Queue<u8, N, u8, SingleCore>;
pub type SCRQ<T, N> = Queue<(T, u8), N, u8, SingleCore>;
#[cfg(armv7m)]
#[inline(always)]
pub fn run<F>(priority: u8, f: F)
where
F: FnOnce(),
{
if priority == 1 {
// if the priority of this interrupt is `1` then BASEPRI can only be `0`
f();
unsafe { basepri::write(0) }
} else {
let initial = basepri::read();
f();
unsafe { basepri::write(initial) }
}
}
#[cfg(not(armv7m))]
#[inline(always)]
pub fn run<F>(_priority: u8, f: F)
where
F: FnOnce(),
{
f();
}
pub struct Barrier {
inner: AtomicBool,
}
impl Barrier {
pub const fn new() -> Self {
Barrier {
inner: AtomicBool::new(false),
}
}
pub fn release(&self) {
self.inner.store(true, Ordering::Release)
}
pub fn wait(&self) {
while !self.inner.load(Ordering::Acquire) {}
}
}
// Newtype over `Cell` that forbids mutation through a shared reference
pub struct Priority {
inner: Cell<u8>,
}
impl Priority {
#[inline(always)]
pub unsafe fn new(value: u8) -> Self {
Priority {
inner: Cell::new(value),
}
}
// these two methods are used by `lock` (see below) but can't be used from the RTFM application
#[inline(always)]
fn set(&self, value: u8) {
self.inner.set(value)
}
#[inline(always)]
fn get(&self) -> u8 {
self.inner.get()
}
}
#[inline(always)]
pub fn assert_send<T>()
where
T: Send,
{
}
#[inline(always)]
pub fn assert_sync<T>()
where
T: Sync,
{
}
#[inline(always)]
pub fn assert_multicore<T>()
where
T: super::MultiCore,
{
}
#[cfg(armv7m)]
#[inline(always)]
pub unsafe fn lock<T, R>(
ptr: *mut T,
priority: &Priority,
ceiling: u8,
nvic_prio_bits: u8,
f: impl FnOnce(&mut T) -> R,
) -> R {
let current = priority.get();
if current < ceiling {
if ceiling == (1 << nvic_prio_bits) {
priority.set(u8::max_value());
let r = interrupt::free(|_| f(&mut *ptr));
priority.set(current);
r
} else {
priority.set(ceiling);
basepri::write(logical2hw(ceiling, nvic_prio_bits));
let r = f(&mut *ptr);
basepri::write(logical2hw(current, nvic_prio_bits));
priority.set(current);
r
}
} else {
f(&mut *ptr)
}
}
#[cfg(armv7m)]
#[inline(always)]
pub unsafe fn glock<T, R>(
ptr: *mut T,
ceiling: u8,
nvic_prio_bits: u8,
f: impl FnOnce(&mut T) -> R,
) -> R {
if ceiling == (1 << nvic_prio_bits) {
interrupt::free(|_| f(&mut *ptr))
} else {
let current = basepri::read();
basepri_max::write(logical2hw(ceiling, nvic_prio_bits));
let r = f(&mut *ptr);
basepri::write(logical2hw(current, nvic_prio_bits));
r
}
}
#[cfg(not(armv7m))]
#[inline(always)]
pub unsafe fn lock<T, R>(
ptr: *mut T,
priority: &Priority,
ceiling: u8,
_nvic_prio_bits: u8,
f: impl FnOnce(&mut T) -> R,
) -> R {
let current = priority.get();
if current < ceiling {
priority.set(u8::max_value());
let r = interrupt::free(|_| f(&mut *ptr));
priority.set(current);
r
} else {
f(&mut *ptr)
}
}
// TODO glock for ARMv6-M
#[inline]
pub fn logical2hw(logical: u8, nvic_prio_bits: u8) -> u8 {
((1 << nvic_prio_bits) - logical) << (8 - nvic_prio_bits)
}
|