1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
use core::fmt;
use Ring;
/// Specifies which element to load into a segment from
/// descriptor tables (i.e., is a index to LDT or GDT table
/// with some additional flags).
///
/// See Intel 3a, Section 3.4.2 "Segment Selectors"
bitflags! {
pub struct SegmentSelector: u16 {
/// Requestor Privilege Level
const RPL_0 = 0b00;
const RPL_1 = 0b01;
const RPL_2 = 0b10;
const RPL_3 = 0b11;
/// Table Indicator (TI) 0 means GDT is used.
const TI_GDT = 0 << 2;
/// Table Indicator (TI) 1 means LDT is used.
const TI_LDT = 1 << 2;
}
}
impl SegmentSelector {
/// Create a new SegmentSelector
///
/// # Arguments
/// * `index` - index in GDT or LDT array.
/// * `rpl` - Requested privilege level of the selector
pub const fn new(index: u16, rpl: Ring) -> SegmentSelector {
SegmentSelector {
bits: index << 3 | (rpl as u16),
}
}
/// Make a new segment selector from a untyped u16 value.
pub const fn from_raw(bits: u16) -> SegmentSelector {
SegmentSelector { bits: bits }
}
}
impl fmt::Display for SegmentSelector {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let r0 = match self.contains(SegmentSelector::RPL_0) {
false => "",
true => "Ring 0 segment selector.",
};
let r1 = match self.contains(SegmentSelector::RPL_1) {
false => "",
true => "Ring 1 segment selector.",
};
let r2 = match self.contains(SegmentSelector::RPL_2) {
false => "",
true => "Ring 2 segment selector.",
};
let r3 = match self.contains(SegmentSelector::RPL_3) {
false => "",
true => "Ring 3 segment selector.",
};
let tbl = match self.contains(SegmentSelector::TI_LDT) {
false => "GDT Table",
true => "LDT Table",
};
write!(
f,
"Index {} in {}, {}{}{}{}",
self.bits >> 3,
tbl,
r0,
r1,
r2,
r3
)
}
}
/// System-Segment and Gate-Descriptor Types 64-bit mode
/// See also Intel 3a, Table 3-2 System Segment and Gate-Descriptor Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SystemDescriptorTypes64 {
//Reserved0 = 0b0000,
//Reserved1 = 0b0001,
LDT = 0b0010,
//Reserved = 0b0011,
//Reserved = 0b0100,
//Reserved = 0b0101,
//Reserved = 0b0110,
//Reserved = 0b0111,
//Reserved = 0b1000,
TssAvailable = 0b1001,
//Reserved = 0b1010,
TssBusy = 0b1011,
CallGate = 0b1100,
//Reserved = 0b1101,
InterruptGate = 0b1110,
TrapGate = 0b1111,
}
/// System-Segment and Gate-Descriptor Types 32-bit mode.
/// See also Intel 3a, Table 3-2 System Segment and Gate-Descriptor Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SystemDescriptorTypes32 {
//Reserved0 = 0b0000,
TSSAvailable16 = 0b0001,
LDT = 0b0010,
TSSBusy16 = 0b0011,
CallGate16 = 0b0100,
TaskGate = 0b0101,
InterruptGate16 = 0b0110,
TrapGate16 = 0b0111,
//Reserved1 = 0b1000,
TssAvailable32 = 0b1001,
//Reserved2 = 0b1010,
TssBusy32 = 0b1011,
CallGate32 = 0b1100,
//Reserved3 = 0b1101,
InterruptGate32 = 0b1110,
TrapGate32 = 0b1111,
}
/// Data Segment types for descriptors.
/// See also Intel 3a, Table 3-1 Code- and Data-Segment Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum DataSegmentType {
/// Data Read-Only
ReadOnly = 0b0000,
/// Data Read-Only, accessed
ReadOnlyAccessed = 0b0001,
/// Data Read/Write
ReadWrite = 0b0010,
/// Data Read/Write, accessed
ReadWriteAccessed = 0b0011,
/// Data Read-Only, expand-down
ReadExpand = 0b0100,
/// Data Read-Only, expand-down, accessed
ReadExpandAccessed = 0b0101,
/// Data Read/Write, expand-down
ReadWriteExpand = 0b0110,
/// Data Read/Write, expand-down, accessed
ReadWriteExpandAccessed = 0b0111,
}
/// Code Segment types for descriptors.
/// See also Intel 3a, Table 3-1 Code- and Data-Segment Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CodeSegmentType {
/// Code Execute-Only
Execute = 0b1000,
/// Code Execute-Only, accessed
ExecuteAccessed = 0b1001,
/// Code Execute/Read
ExecuteRead = 0b1010,
/// Code Execute/Read, accessed
ExecuteReadAccessed = 0b1011,
/// Code Execute-Only, conforming
ExecuteConforming = 0b1100,
/// Code Execute-Only, conforming, accessed
ExecuteConformingAccessed = 0b1101,
/// Code Execute/Read, conforming
ExecuteReadConforming = 0b1110,
/// Code Execute/Read, conforming, accessed
ExecuteReadConformingAccessed = 0b1111,
}
/// Helper enum type to differentiate between the different descriptor types that all end up written in the same field.
#[derive(Debug, Eq, PartialEq)]
pub(crate) enum DescriptorType {
System64(SystemDescriptorTypes64),
System32(SystemDescriptorTypes32),
Data(DataSegmentType),
Code(CodeSegmentType)
}
/// Trait that defines the architecture specific functions for building various system segment descriptors
/// which are available on all 16, 32, and 64 bits.
pub(crate) trait GateDescriptorBuilder<Size> {
fn tss_descriptor(selector: SegmentSelector, offset: Size, available: bool) -> Self;
fn call_gate_descriptor(selector: SegmentSelector, offset: Size) -> Self;
fn interrupt_descriptor(selector: SegmentSelector, offset: Size) -> Self;
fn trap_gate_descriptor(selector: SegmentSelector, offset: Size) -> Self;
}
/// Trait to implement for building a task-gate (this descriptor is not implemented for 64-bit systems since
/// Hardware task switches are not supported in IA-32e mode.).
pub(crate) trait TaskGateDescriptorBuilder {
fn task_gate_descriptor(selector: SegmentSelector) -> Self;
}
/// Trait to define functions that build architecture specific code and data descriptors.
pub(crate) trait SegmentDescriptorBuilder<Size> {
fn code_descriptor(base: Size, limit: Size, cst: CodeSegmentType) -> Self;
fn data_descriptor(base: Size, limit: Size, dst: DataSegmentType) -> Self;
}
/// Trait to define functions that build an architecture specific ldt descriptor.
/// There is no corresponding ldt descriptor type for 16 bit.
pub(crate) trait LdtDescriptorBuilder<Size> {
fn ldt_descriptor(base: Size, limit: Size) -> Self;
}
pub(crate) trait BuildDescriptor<Descriptor> {
fn finish(&self) -> Descriptor;
}
/// Makes building descriptors easier (hopefully).
#[derive(Debug)]
pub struct DescriptorBuilder {
/// The base defines the location of byte 0 of the segment within the 4-GByte linear address space.
/// The limit is the size of the range covered by the segment. Really a 20bit value.
pub(crate) base_limit: Option<(u64, u64)>,
/// Alternative to base_limit we use a selector that points to a segment and an an offset for certain descriptors.
pub(crate) selector_offset: Option<(SegmentSelector, u64)>,
/// Descriptor type
pub(crate) typ: Option<DescriptorType>,
/// Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being the most privileged level.
pub(crate) dpl: Option<Ring>,
/// Indicates whether the segment is present in memory (set) or not present (clear).
pub(crate) present: bool,
/// Available for use by system software
pub(crate) avl: bool,
/// Default operation size
pub(crate) db: bool,
/// Determines the scaling of the segment limit field. When the granularity flag is clear, the segment limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
pub(crate) limit_granularity_4k: bool,
}
impl DescriptorBuilder {
/// Start building a new descriptor with a base and limit.
pub(crate) fn with_base_limit(base: u64, limit: u64) -> DescriptorBuilder {
DescriptorBuilder { base_limit: Some((base, limit)), selector_offset: None, typ: None, dpl: None, present: false, avl: false, db: false, limit_granularity_4k: false }
}
/// Start building a new descriptor with a segment selector and offset.
pub(crate) fn with_selector_offset(selector: SegmentSelector, offset: u64) -> DescriptorBuilder {
DescriptorBuilder { base_limit: None, selector_offset: Some((selector, offset)), typ: None, dpl: None, present: false, avl: false, db: false, limit_granularity_4k: false }
}
pub(crate) fn set_type(mut self, typ: DescriptorType) -> DescriptorBuilder {
self.typ = Some(typ);
self
}
/// The segment limit is interpreted in 4-KByte units if this is set.
pub fn limit_granularity_4kb(mut self) -> DescriptorBuilder {
self.limit_granularity_4k = true;
self
}
/// Indicates whether the segment is present in memory (set) or not present (clear).
pub fn present(mut self) -> DescriptorBuilder {
self.present = true;
self
}
/// Specifies the privilege level of the segment.
pub fn dpl(mut self, dpl: Ring) -> DescriptorBuilder {
self.dpl = Some(dpl);
self
}
/// Toggle the AVL bit.
pub fn avl(mut self) -> DescriptorBuilder {
self.avl = true;
self
}
/// Set default operation size (false for 16bit segment, true for 32bit segments).
pub fn db(mut self) -> DescriptorBuilder {
self.db = true;
self
}
}
/// Reload stack segment register.
pub unsafe fn load_ss(sel: SegmentSelector) {
asm!("movw $0, %ss " :: "r" (sel.bits()) : "memory");
}
/// Reload data segment register.
pub unsafe fn load_ds(sel: SegmentSelector) {
asm!("movw $0, %ds " :: "r" (sel.bits()) : "memory");
}
/// Reload es segment register.
pub unsafe fn load_es(sel: SegmentSelector) {
asm!("movw $0, %es " :: "r" (sel.bits()) : "memory");
}
/// Reload fs segment register.
pub unsafe fn load_fs(sel: SegmentSelector) {
asm!("movw $0, %fs " :: "r" (sel.bits()) : "memory");
}
/// Reload gs segment register.
pub unsafe fn load_gs(sel: SegmentSelector) {
asm!("movw $0, %gs " :: "r" (sel.bits()) : "memory");
}
/// Returns the current value of the code segment register.
pub fn cs() -> SegmentSelector {
let segment: u16;
unsafe { asm!("mov %cs, $0" : "=r" (segment) ) };
SegmentSelector::from_raw(segment)
}
|