aboutsummaryrefslogtreecommitdiff
path: root/CS105MiniProject.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'CS105MiniProject.ipynb')
-rw-r--r--CS105MiniProject.ipynb140
1 files changed, 114 insertions, 26 deletions
diff --git a/CS105MiniProject.ipynb b/CS105MiniProject.ipynb
index c783024..2f86c48 100644
--- a/CS105MiniProject.ipynb
+++ b/CS105MiniProject.ipynb
@@ -5,6 +5,7 @@
"source": [
"<div>\n",
" <h1><center>CS105 Mini-Project</center></h1>\n",
+ " <h2><center>Does who a student is living with effect if and how they work jobs?</center></h2>\n",
" <p>By: <b>NAMES HERE</b></p>\n",
"</div>"
],
@@ -25,7 +26,17 @@
},
{
"cell_type": "code",
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n4 2/9/2024 20:26:16 Graduate \n.. ... ... \n255 2/14/2024 19:46:28 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n258 2/15/2024 16:10:40 Sophomore \n259 2/15/2024 16:14:11 Sophomore \n\n Who do you live with? \\\n0 Neither \n1 Both \n2 Friends \n3 Neither \n4 Neither \n.. ... \n255 Friends \n256 Family \n257 Family \n258 Family \n259 Friends \n\n Do you currently live in a house, apartnment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? Do you currently work? \\\n0 6 Yes \n1 4 No \n2 4 No \n3 1 No \n4 1 Yes \n.. ... ... \n255 5 Yes \n256 North District 4 bed 2 bath No \n257 9 No \n258 4 Yes \n259 3 (room), 8 (hall), ~70 (building) No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 NaN \n2 NaN \n3 NaN \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 NaN \n257 1 - 5 \n258 5 - 10 \n259 NaN \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 No \n4 Yes \n.. ... \n255 No \n256 NaN \n257 No \n258 No \n259 NaN \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 10 columns]",
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartnment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>North District 4 bed 2 bath</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>No</td>\n <td>1 - 5</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3 (room), 8 (hall), ~70 (building)</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 10 columns</p>\n</div>"
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"%matplotlib inline\n",
"import pandas as pd\n",
@@ -39,9 +50,14 @@
"df"
],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.045312Z",
+ "start_time": "2024-02-23T01:12:48.152070Z"
+ }
},
- "id": "3bea6ea662d6c063"
+ "id": "3bea6ea662d6c063",
+ "execution_count": 1
},
{
"cell_type": "markdown",
@@ -55,7 +71,17 @@
},
{
"cell_type": "code",
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n4 2/9/2024 20:26:16 Graduate \n.. ... ... \n255 2/14/2024 19:46:28 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n258 2/15/2024 16:10:40 Sophomore \n259 2/15/2024 16:14:11 Sophomore \n\n Who do you live with? \\\n0 Neither \n1 Both \n2 Friends \n3 Neither \n4 Neither \n.. ... \n255 Friends \n256 Family \n257 Family \n258 Family \n259 Friends \n\n Do you currently live in a house, apartnment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? Do you currently work? \\\n0 6 Yes \n1 4 No \n2 4 No \n3 1 No \n4 1 Yes \n.. ... ... \n255 5 Yes \n256 4 No \n257 9 No \n258 4 Yes \n259 3 No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 0 \n2 0 \n3 0 \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 0 \n257 0 \n258 5 - 10 \n259 0 \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 NaN \n4 Yes \n.. ... \n255 No \n256 NaN \n257 NaN \n258 No \n259 NaN \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 10 columns]",
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartnment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 10 columns</p>\n</div>"
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"# Fixes empty values\n",
"df['Do you currently work?'] = df['Do you currently work?'].fillna('No')\n",
@@ -79,13 +105,28 @@
"df"
],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.066644Z",
+ "start_time": "2024-02-23T01:12:49.047827Z"
+ }
},
- "id": "f71f8085d5f66b0"
+ "id": "f71f8085d5f66b0",
+ "execution_count": 2
},
{
"cell_type": "code",
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n4 2/9/2024 20:26:16 Graduate \n8 2/9/2024 22:02:49 Junior \n9 2/9/2024 22:08:43 Senior \n13 2/9/2024 22:15:13 Junior \n.. ... ... \n246 2/13/2024 19:37:02 Graduate \n247 2/13/2024 21:39:14 Senior \n252 2/14/2024 9:48:12 Junior \n255 2/14/2024 19:46:28 Junior \n258 2/15/2024 16:10:40 Sophomore \n\n Who do you live with? \\\n0 Neither \n4 Neither \n8 Friends \n9 Family \n13 Family \n.. ... \n246 Family \n247 Friends \n252 Family \n255 Friends \n258 Family \n\n Do you currently live in a house, apartnment, or dorm? \\\n0 House \n4 Apartment \n8 House \n9 House \n13 Apartment \n.. ... \n246 House \n247 Apartment \n252 House \n255 House \n258 Apartment \n\n How many people live in your household? Do you currently work? \\\n0 6 Yes \n4 1 Yes \n8 6 Yes \n9 5 Yes \n13 4 Yes \n.. ... ... \n246 2 Yes \n247 3 Yes \n252 5 Yes \n255 5 Yes \n258 4 Yes \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n4 10 - 20 \n8 10 - 20 \n9 1 - 5 \n13 10 - 20 \n.. ... \n246 10 - 20 \n247 20 - 40 \n252 20 - 40 \n255 10 - 20 \n258 5 - 10 \n\n Do you work on or off campus? \\\n0 Off-campus \n4 Off-campus \n8 On-campus \n9 On-campus \n13 Off-campus \n.. ... \n246 On-campus \n247 Off-campus \n252 Off-campus \n255 On-campus \n258 On-campus \n\n Do you work in a department related to your major? \\\n0 No \n4 Yes \n8 No \n9 No \n13 No \n.. ... \n246 Yes \n247 No \n252 No \n255 No \n258 No \n\n Do you have roommates that are part of your major? \n0 No \n4 No \n8 No \n9 No \n13 No \n.. ... \n246 No \n247 Yes \n252 No \n255 No \n258 No \n\n[77 rows x 10 columns]",
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartnment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>8</th>\n <td>2/9/2024 22:02:49</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>6</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>9</th>\n <td>2/9/2024 22:08:43</td>\n <td>Senior</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>Yes</td>\n <td>1 - 5</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>13</th>\n <td>2/9/2024 22:15:13</td>\n <td>Junior</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>246</th>\n <td>2/13/2024 19:37:02</td>\n <td>Graduate</td>\n <td>Family</td>\n <td>House</td>\n <td>2</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>247</th>\n <td>2/13/2024 21:39:14</td>\n <td>Senior</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>3</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>252</th>\n <td>2/14/2024 9:48:12</td>\n <td>Junior</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n </tbody>\n</table>\n<p>77 rows × 10 columns</p>\n</div>"
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"# Working DataFrame\n",
"w_df = df[df['Do you currently work?'] == 'Yes']\n",
@@ -94,29 +135,45 @@
"w_df"
],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.084475Z",
+ "start_time": "2024-02-23T01:12:49.068965Z"
+ }
},
- "id": "6c1d9ee7948e6b9a"
+ "id": "6c1d9ee7948e6b9a",
+ "execution_count": 3
},
{
"cell_type": "code",
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Timestamp What is your current class standing? \\\n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n5 2/9/2024 20:45:09 Junior \n6 2/9/2024 21:55:59 Sophomore \n.. ... ... \n253 2/14/2024 13:45:45 Senior \n254 2/14/2024 16:26:06 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n259 2/15/2024 16:14:11 Sophomore \n\n Who do you live with? \\\n1 Both \n2 Friends \n3 Neither \n5 Both \n6 Friends \n.. ... \n253 Family \n254 Family \n256 Family \n257 Family \n259 Friends \n\n Do you currently live in a house, apartnment, or dorm? \\\n1 Apartment \n2 House \n3 Apartment \n5 Apartment \n6 Apartment \n.. ... \n253 House \n254 House \n256 Apartment \n257 House \n259 Dorm \n\n How many people live in your household? Do you currently work? \\\n1 4 No \n2 4 No \n3 1 No \n5 4 No \n6 4 No \n.. ... ... \n253 6 No \n254 5 No \n256 4 No \n257 9 No \n259 3 No \n\n How many hours do you work per week on average? \\\n1 0 \n2 0 \n3 0 \n5 0 \n6 0 \n.. ... \n253 0 \n254 0 \n256 0 \n257 0 \n259 0 \n\n Do you work on or off campus? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 Off-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 NaN \n259 NaN \n\n Do you have roommates that are part of your major? \n1 Yes \n2 No \n3 No \n5 No \n6 No \n.. ... \n253 No \n254 Yes \n256 No \n257 No \n259 Yes \n\n[183 rows x 10 columns]",
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartnment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>5</th>\n <td>2/9/2024 20:45:09</td>\n <td>Junior</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>6</th>\n <td>2/9/2024 21:55:59</td>\n <td>Sophomore</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>253</th>\n <td>2/14/2024 13:45:45</td>\n <td>Senior</td>\n <td>Family</td>\n <td>House</td>\n <td>6</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>254</th>\n <td>2/14/2024 16:26:06</td>\n <td>Junior</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>183 rows × 10 columns</p>\n</div>"
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"nw_df"
],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.104996Z",
+ "start_time": "2024-02-23T01:12:49.089572Z"
+ }
},
- "id": "34f69a756f513fb7"
+ "id": "34f69a756f513fb7",
+ "execution_count": 4
},
{
"cell_type": "markdown",
"source": [
- "<div>\n",
- " <h1>CS105 Project</h2>\n",
- " <p>Ali Naqvi, ...</p>\n",
- " <p>Topic: Does who a student is living with effect if and how they work jobs?</p>\n",
- "</div>\n"
+ "# Analysis"
],
"metadata": {
"collapsed": false
@@ -127,10 +184,31 @@
"cell_type": "code",
"outputs": [],
"source": [
- "import matplotlib.pyplot as plt\n",
- "\n",
- "# Assuming 'df' is your DataFrame\n",
- "\n",
+ "import matplotlib.pyplot as plt"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.110581Z",
+ "start_time": "2024-02-23T01:12:49.107274Z"
+ }
+ },
+ "id": "39571411a9ea92e0",
+ "execution_count": 5
+ },
+ {
+ "cell_type": "code",
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "<Figure size 800x800 with 1 Axes>",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAKSCAYAAABIowakAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjHklEQVR4nO3deXxU9b3/8feZmUz2nSSQAImssooiooBLRUW0bnW52k1c2v5au9hb2157u6htbavXqrW1tZtarFarVtu6gbtGBVFBWUSW7CH7PpPZz+8PSEoEspHkzJx5PR+PPCBnTmY+M5nlne9qmKZpCgAAALblsLoAAAAAjC4CHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCH3rdcMMNMgxjTG7rlFNO0SmnnNL7/csvvyzDMPToo4+Oye2vWrVKJSUlY3Jbw9XV1aWrr75a48ePl2EYuvbaa60uadjG8rk1WIZh6Ktf/arVZYy6VatWKS0tzeoyBmQYhm644Qary4gbJSUl+uQnP2l1GRhDBD6buu+++2QYRu9XUlKSCgsLtWLFCv3qV79SZ2fniNxObW2tbrjhBm3cuHFErm8kRXNtg3HzzTfrvvvu05e//GWtXr1an/vc5w55bklJSZ/fd35+vk488UT94x//GMOKx8YjjzwiwzAOet+OOuooGYahl1566YDLJk+erCVLloxFiZKkcDisjIwMnXfeeQdcdvvtt8swDF1++eUHXPbDH/5QhmHoo48+GosyY0p5eXmf53lCQoLGjRunJUuW6Hvf+54qKyvHpI5Vq1b1+YPV6/Xqhhtu0Msvvzzgz65fv16GYej2228/4LLzzjtPhmHo3nvvPeCyk046SUVFRYdTNuIcgc/mbrrpJq1evVq//e1v9bWvfU2SdO2112revHl6//33+5z7/e9/X93d3UO6/traWt14441DDlVr1qzRmjVrhvQzQ9VfbX/4wx+0ffv2Ub39w/Xiiy/q+OOP149+9CN99rOf1cKFC/s9f8GCBVq9erVWr16t6667TrW1tfrUpz6l3/3ud2NU8dhYtmyZJOn111/vc7yjo0ObN2+Wy+VSaWlpn8uqqqpUVVXV+7Njwel06vjjj9cbb7xxwGWlpaUHrbPnsvz8fM2YMWMsyoxJl112mVavXq0//elP+sEPfqApU6bojjvu0KxZs/S3v/1tzOvxer268cYbBxX4jjnmGKWkpBzw/JWkN95446DPi0AgoLfffltLly4dqZIRh1xWF4DRtXLlSh177LG9319//fV68cUX9clPflLnnnuutm3bpuTkZEmSy+WSyzW6Twmv16uUlBS53e5RvZ2BJCQkWHr7g9HQ0KDZs2cP+vyioiJ99rOf7f3+85//vKZNm6bbb79d/+///b/RKNEShYWFOuKIIw74wHzzzTdlmqYuvvjiAy7r+X4sA1/P7a1du1bbtm3TrFmzeo+Xlpbqkksu0YMPPqi6ujqNHz9ekhQKhbRu3TqdccYZh33bHo9Hqamph3090eiYY47p81yXpIqKCp1xxhm6/PLLNWvWLB111FEWVdc/l8ulxYsXHxDqtm/frqamJn36058+4Pn7zjvvyOfzjcjzt+c9GPGHFr44dOqpp+oHP/iBKioq9MADD/QeP9g4q7Vr12rZsmXKyspSWlqaZs6cqe9973uS9o67W7RokSTpiiuu6O1mue+++yTtHac3d+5cvfPOOzrppJOUkpLS+7MfH8PXIxwO63vf+57Gjx+v1NRUnXvuuaqqqupzTklJiVatWnXAz+5/nQPVdrAxfB6PR9/61rc0adIkJSYmaubMmfq///s/mabZ57yesV9PPPGE5s6dq8TERM2ZM0fPPvvswR/wj2loaNBVV12lgoICJSUl6aijjtL999/fe3nPeMaysjI99dRTvbWXl5cP6vp7jB8/XrNmzVJZWVnvsZqaGl155ZUqKCjorfvPf/7zkGuU/tO99n//93+6/fbbVVxcrOTkZJ188snavHnzoGp84IEHtHDhQiUnJysnJ0eXXnrpAb/vg1m2bJnee++9Pi3SpaWlmjNnjlauXKm33npLkUikz2WGYRy0hWQwv8f33ntPK1euVEZGhtLS0rR8+XK99dZbg6qz5/Z77N69W3V1dfrqV7+qpKSkPpdt3LhRHo+nzwf7iy++qBNPPFGpqanKysrSeeedp23btvW5nZ7X7tatW/XpT39a2dnZ/YaDjRs3Ki8vT6eccoq6uroOed7777+vVatWacqUKUpKStL48eN15ZVXqrm5+aC3v3PnTq1atUpZWVnKzMzUFVdcIa/X2+dcv9+vb37zm8rLy1N6errOPfdcVVdX9/MoDk5xcbHuu+8+BQIB3XLLLX0u2717ty6++GLl5OQoJSVFxx9/vJ566qk+5/S87h555BH99Kc/1cSJE5WUlKTly5dr586dh7zd8vJy5eXlSZJuvPHG3tdrf+MRly1bpvr6+j7XW1paqoyMDH3xi1/sDX/7X9bzcz3uvvtuzZkzR4mJiSosLNQ111yjtra2PrfT33vwwdx///1yuVz69re/fchzELsIfHGqZzxYf92qW7Zs0Sc/+Un5/X7ddNNNuu2223Tuuef2vvnMmjVLN910kyTpi1/8Ym934kknndR7Hc3NzVq5cqUWLFigO+64Q5/4xCf6reunP/2pnnrqKX33u9/V17/+da1du1annXbakLuaB1Pb/kzT1Lnnnqvbb79dZ555pn75y19q5syZ+va3v63//u//PuD8119/XV/5yld06aWX6pZbbpHP59OFF154wAfhx3V3d+uUU07R6tWr9ZnPfEa33nqrMjMztWrVKt155529ta9evVrjxo3r003b86EyWMFgUFVVVcrNzZUk1dfX6/jjj9fzzz+vr371q7rzzjs1bdo0XXXVVbrjjjuGVOP+/vKXv+hXv/qVrrnmGl1//fXavHmzTj31VNXX1/db309/+lN9/vOf1/Tp0/XLX/5S1157rV544QWddNJJB3xwfdyyZcsUDAa1bt263mOlpaVasmSJlixZovb29j6hs7S0VEceeWTvY9FjML/HLVu26MQTT9SmTZv0ne98Rz/4wQ9UVlamU045pc/tH8zxxx8vl8vVp8WmtLRUqampWrRokY499tg+ge/jH+zPP/+8VqxYoYaGBt1www367//+b73xxhtaunTpQf8AuPjii+X1enXzzTfrC1/4wkFrevvtt3Xqqafq6KOP1jPPPNPvhI61a9dq9+7duuKKK3TXXXfp0ksv1d/+9jedddZZB/whJEmXXHKJOjs79bOf/UyXXHKJ7rvvPt144419zrn66qt1xx136IwzztDPf/5zJSQk6Oyzzz70gzgEJ5xwgqZOnaq1a9f2Hquvr9eSJUv03HPP6Stf+Yp++tOfyufz6dxzzz3oONCf//zn+sc//qHrrrtO119/vd566y195jOfOeRt5uXl6be//a0k6YILLuh9vX7qU5865M8cbFhCaWmpjj/+eC1evFgJCQl9hgKUlpYqPT29t9Xyhhtu0DXXXKPCwkLddtttuvDCC3XPPffojDPOUDAY7HNbg30P/v3vf68rrrhC//M//6Nbb731kLUjhpmwpXvvvdeUZL799tuHPCczM9M8+uije7//0Y9+ZO7/lLj99ttNSWZjY+Mhr+Ptt982JZn33nvvAZedfPLJpiTzd7/73UEvO/nkk3u/f+mll0xJZlFRkdnR0dF7/JFHHjElmXfeeWfvseLiYvPyyy8f8Dr7q+3yyy83i4uLe79/4oknTEnmT37ykz7nXXTRRaZhGObOnTt7j0ky3W53n2ObNm0yJZl33XXXAbe1vzvuuMOUZD7wwAO9xwKBgHnCCSeYaWlpfe57cXGxefbZZ/d7ffufe8YZZ5iNjY1mY2OjuWnTJvPSSy81JZlf+9rXTNM0zauuusqcMGGC2dTU1OdnL730UjMzM9P0er1DqrGsrMyUZCYnJ5vV1dW9565bt86UZH7zm9/sPfbx51Z5ebnpdDrNn/70p31q+eCDD0yXy3XA8Y/bsmWLKcn88Y9/bJqmaQaDQTM1NdW8//77TdM0zYKCAvM3v/mNaZqm2dHRYTqdTvMLX/hCn+sY7O/x/PPPN91ut7lr167eY7W1tWZ6erp50kkn9VunaZrmokWLzKlTp/Z+/6Uvfcn8xCc+YZqmaX7nO98xFy1a1HvZRRddZKakpJjBYNA0TdNcsGCBmZ+fbzY3N/ep0eFwmJ///Od7j/U8vpdddtkBt3/55Zebqamppmma5uuvv25mZGSYZ599tunz+Qasvec5sb+HHnrIlGS++uqrB9z+lVde2efcCy64wMzNze39fuPGjaYk8ytf+Uqf8z796U+bkswf/ehH/dbT85y79dZbD3nOeeedZ0oy29vbTdM0zWuvvdaUZL722mu953R2dppHHHGEWVJSYobDYdM0//MeNGvWLNPv9/eee+edd5qSzA8++OCQt9nY2Dio+nv0PCevuuqq3mMzZ840b7zxRtM0TfO4444zv/3tb/delpeXZ55++ummaZpmQ0OD6Xa7zTPOOKO3dtM0zV//+temJPPPf/5z77H+3oP3f3+58847TcMwel9PsCda+OJYWlpav7N1s7KyJElPPvlkn+6xoUhMTNQVV1wx6PM///nPKz09vff7iy66SBMmTNDTTz89rNsfrKefflpOp1Nf//rX+xz/1re+JdM09cwzz/Q5ftppp2nq1Km938+fP18ZGRnavXv3gLczfvx4XXbZZb3HEhIS9PWvf11dXV165ZVXhn0f1qxZo7y8POXl5emoo47S3//+d33uc5/TL37xC5mmqccee0znnHOOTNNUU1NT79eKFSvU3t6ud999d1g1nn/++X1mDx533HFavHhxv7+zxx9/XJFIRJdcckmfWsaPH6/p06cfdJbt/mbNmqXc3NzeFpJNmzbJ4/H0zsJdsmRJb2vZm2++qXA4fNAuzoF+j+FwWGvWrNH555+vKVOm9J43YcKE3rFWHR0d/da6bNky7dq1S3V1dZL+0xIpSUuXLtV7773X2+1ZWlqqxYsXy+Vyac+ePdq4caNWrVqlnJycPjWefvrpB318+xur+dJLL2nFihVavny5Hn/8cSUmJvZbt6Te8b2S5PP51NTUpOOPP16Sep8v/d3+iSeeqObm5t7HqKfmj7/ORnLJoZ4Wy573tqefflrHHXdcn99/WlqavvjFL6q8vFxbt27t8/NXXHFFnzHGJ554oiQN+NoeivT0dM2fP7/3+dvU1KTt27f3eV70PH8/+ugjNTY29mn1DQQCuvbaa+Vw/Ocj/Atf+IIyMjIO6Koe6D34lltu0Te+8Q394he/0Pe///0Ru4+IPgS+ONbV1dUnXH3cf/3Xf2np0qW6+uqrVVBQoEsvvVSPPPLIkMJfUVHRkCZoTJ8+vc/3hmFo2rRpQx6/NlQVFRUqLCw84PHoGWhfUVHR5/jkyZMPuI7s7Gy1trYOeDvTp0/v80bd3+0MxeLFi7V27Vo9//zzeuONN9TU1KS//OUvSk5OVmNjo9ra2vT73/++NxT2fPV8GDQ0NAyrxo//ziRpxowZ/f7OduzYIdM0NX369APq2bZtW28th2IYhpYsWdI7Vq9nZuu0adMk9Q18Bxv/1GOg32NjY6O8Xq9mzpx5wHmzZs1SJBIZcMzh/uP42tratGXLlt6xhEuWLFEoFNL69etVVlamPXv29J7f8zgf6rabmprk8Xj6HD/iiCMOWoPP59PZZ5+to48+Wo888sigX5MtLS36xje+oYKCAiUnJysvL6/3Ntrb2w84/+OPZ3Z2tiT1Pp4VFRVyOBx9Qvah7uNw9YxJ7HktV1RUHPIx7Ll8fwPdh5GybNmy3rF6b7zxRu+sbmnv8+Kdd96R3+8/4Pl7qOeF2+3WlClTDrg//b0Hv/LKK/rud7+r7373u4zbiwPM0o1T1dXVam9v7/2APJjk5GS9+uqreumll/TUU0/p2Wef1cMPP6xTTz1Va9askdPpHPB29m8hGCmHWsA3HA4PqqaRcKjbMQ8yrmmsjBs3TqeddtpBL+sJ6Z/97GcPuvabtLflaKxEIhEZhqFnnnnmoI/lYBYKXrZsmf71r3/pgw8+6NNqJu39wPz2t7+tmpoavf766yosLOzTQtdjLH6P+4/X6pkdecIJJ0ja+zubPn26Xn/99d7geDgzMQ/1ektMTNRZZ52lJ598Us8+++ygF9y95JJL9MYbb+jb3/62FixYoLS0NEUiEZ155pkH/cMvGl4XmzdvVn5+vjIyMob182N1H5YtW6a77rpLpaWleuONNzRv3rze5/2SJUvk9/v19ttv6/XXX5fL5eoNg0PV33vwnDlz1NbWptWrV+tLX/rSIf9ggD0Q+OLU6tWrJUkrVqzo9zyHw6Hly5dr+fLl+uUvf6mbb75Z//u//6uXXnpJp5122ojvnrBjx44+35umqZ07d/YJI9nZ2Qcd1F9RUdHnQ30otRUXF+v5559XZ2dnn1a+Dz/8sPfykVBcXKz3339fkUikTwvaSN/Ox/XMiAyHw4cMhcOt8eO/M2lvN1R/O5lMnTpVpmnqiCOOGPZ6c/sHqdLS0j7dggsXLlRiYqJefvllrVu3TmedddawbiMvL08pKSkHXbPxww8/lMPh0KRJk/q9jvz8/N5Ql5qaqtmzZ/cOl5D+0xpZXV0tp9PZGwZ7HudD3fa4ceMGveyKYRj661//qvPOO08XX3yxnnnmmYPOkt9fa2urXnjhBd1444364Q9/2Hv8YL/vwSouLlYkEtGuXbv6tFCN1JqYb775pnbt2tVnyZbi4uJDPoY9lx+u4bwP7v/8ffPNN/vMIC8sLFRxcbFKS0tVWlqqo48+uvePhf2fF/u/3wUCAZWVlQ34+t7fuHHj9Oijj2rZsmVavnx57x9HsCe6dOPQiy++qB//+Mc64ogj+p191tLScsCxBQsWSNq7tIKk3g+cgWZVDtZf/vKXPuMKH330Ue3Zs0crV67sPTZ16lS99dZbCgQCvcf+/e9/H9C1NpTazjrrLIXDYf3617/uc7xnR4T9b/9wnHXWWaqrq9PDDz/ceywUCumuu+5SWlqaTj755BG5nY9zOp268MIL9dhjjx10yZTGxsZh1/jEE0+opqam9/v169dr3bp1/T5mn/rUp+R0OnXjjTce0HJimuaAs50l6dhjj1VSUpL++te/qqampk8LX2Jioo455hj95je/OWCZk6FwOp0644wz9OSTT/bpoq6vr9eDDz6oZcuWDaoladmyZdq4caPWrFlzwG4fS5Ys0ZtvvqnXXntN8+fP7/2DY8KECVqwYIHuv//+Ps/hzZs3a82aNUMOsW63W48//rgWLVqkc845R+vXr+/3/J6Wro//fvaf0T1UPc+JX/3qVyN2nT0qKiq0atUqud3uPt2TZ511ltavX68333yz95jH49Hvf/97lZSUDGmty0PpCWNDeR/sWU/yhRde0IYNGw76vHjiiSe0ffv2Ps/f0047TW63W7/61a/6/G7+9Kc/qb29fcgznidOnKjnn39e3d3dOv300wf12kNsooXP5p555hl9+OGHCoVCqq+v14svvqi1a9equLhY//znP5WUlHTIn73pppv06quv6uyzz1ZxcbEaGhp09913a+LEib1vQFOnTlVWVpZ+97vfKT09XampqVq8ePGwuwZycnK0bNkyXXHFFaqvr9cdd9yhadOm9Vli4uqrr9ajjz6qM888U5dccol27dqlBx544IBxQUOp7ZxzztEnPvEJ/e///q/Ky8t11FFHac2aNXryySd17bXXHnDdw/XFL35R99xzj1atWqV33nlHJSUlevTRR1VaWqo77rij3zGVh+vnP/+5XnrpJS1evFhf+MIXNHv2bLW0tOjdd9/V888/3xvwh1rjtGnTtGzZMn35y1+W3+/XHXfcodzcXH3nO985ZC1Tp07VT37yE11//fUqLy/X+eefr/T0dJWVlekf//iHvvjFL+q6667r9/643W4tWrRIr732mhITEw/YiWTJkiW67bbbJB1eN+lPfvKT3vUov/KVr8jlcumee+6R3+8/YL23Q1m2bJnuvfdevf3227rmmmsOqLO9vV3t7e29u+H0uPXWW7Vy5UqdcMIJuuqqq9Td3a277rpLmZmZw9p3Njk5Wf/+97916qmnauXKlXrllVc0d+7cg56bkZGhk046SbfccouCwaCKioq0Zs2aPus6DtWCBQt02WWX6e6771Z7e7uWLFmiF154od917g7m3Xff1QMPPKBIJKK2tja9/fbbeuyxx2QYhlavXt2nR+B//ud/9NBDD2nlypX6+te/rpycHN1///0qKyvTY489dsBY1eFITk7W7Nmz9fDDD2vGjBnKycnR3LlzD/nY9li2bFlvb8vH14hcsmSJHnrood7zeuTl5en666/XjTfeqDPPPFPnnnuutm/frrvvvluLFi06YEHqwZg2bZrWrFmjU045RStWrNCLL7447C5xRDErpgZj9PUsy9Lz5Xa7zfHjx5unn366eeedd/ZZ/qPHx5fOeOGFF8zzzjvPLCwsNN1ut1lYWGhedtll5kcffdTn55588klz9uzZpsvl6rMMysknn2zOmTPnoPUdalmWhx56yLz++uvN/Px8Mzk52Tz77LPNioqKA37+tttuM4uKiszExERz6dKl5oYNGw64zv5q+/iyLKa5d6mGb37zm2ZhYaGZkJBgTp8+3bz11lvNSCTS5zxJ5jXXXHNATYdaLubj6uvrzSuuuMIcN26c6Xa7zXnz5h106ZihLssymHPr6+vNa665xpw0aZKZkJBgjh8/3ly+fLn5+9//fsg17r9Exm233WZOmjTJTExMNE888URz06ZNfc79+HOrx2OPPWYuW7bMTE1NNVNTU80jjzzSvOaaa8zt27cP6n5ff/31piRzyZIlB1z2+OOPm5LM9PR0MxQKHXD5UH6P7777rrlixQozLS3NTElJMT/xiU+Yb7zxxqBqNE3T3L59e+9r8eOvn0gkYmZlZZmSzIcffviAn33++efNpUuXmsnJyWZGRoZ5zjnnmFu3bu1zTs/je7AllPZflqVHU1OTOXv2bHP8+PHmjh07Dll3dXW1ecEFF5hZWVlmZmamefHFF5u1tbUHLEFyqNvveR8qKyvrPdbd3W1+/etfN3Nzc83U1FTznHPOMauqqoa0LEvPl8vlMnNycszFixeb119//UHfK0zTNHft2mVedNFFZlZWlpmUlGQed9xx5r///e8+5/S8B/39738/6G0e7DW6vzfeeMNcuHCh6Xa7B71Eyz333NO7HNXHvfvuu733s76+/oDLf/3rX5tHHnmkmZCQYBYUFJhf/vKXzdbW1j7n9PcefLD3jHXr1vUuN3SwJXkQ2wzTtHCUOYCYVV5eriOOOEK33nrrgK1xAABrMYYPAADA5gh8AAAANkfgAwAAsDnG8AEAANgcLXwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmXFYXAACHIxwxFYhEFAxHFAibCkYiMk3JlLnvX8k0zb3/SjJNqWjXNsnhkAzjP1/7vjecThlJSTISE6XExN7/G06nxfcUAIaPwAcgKpimqe5QRP7wvvAWiSgQjigYNhXY931PqPvP96bCpjnk28r597+HXqDL9Z/w1xMIe75PTJSRnCxHerocmZkyMjP3/uviLRZAdODdCMCYiZimPIGwuoIheYJhdQX2/uvZ9+/Qo9sYCoVkdnXJ7Ooa9I8Yqan/CYAZGXL0BMGef1NTZRjGKBYNAHsR+ACMqFDElCcQ2i/UheUJhuQJhOUNha0ub0yZHo/CHo9UW3vwE5zOvSFw3Dg58/PlKCiQs6BAjtxcGQ6GWAMYOQQ+AMPmCYbU2h1Uq2/vV2cgJH84YnVZsSMcVqSlRZGWFoU++ug/x53OvSGwoOA/QTA/X46MDOtqBRDTCHwABsUfjqjVF+gT8Ah3oyQcVqS+XpH6egX3O2wkJfWGP2dBgZxFRXIUFNAtDGBABD4ABwhHTLX5gmrxBXrDnScYX92x0cj0+RSuqFC4ouI/BxMT5Zo0Sc7Jk+WaPFnOoiImiwA4AO8KANQVCKnJG1CLL6hWX0Ad/lB0T6DAf/j9Cu3cqdDOnfJLktMpZ2Hh3vC3LwQaSUlWVwnAYgQ+IA6FIqYavX7Ve/Z+0XpnI+GwwlVVCldVSaWlkmHIkZ+/txWwuFiuyZMZCwjEIQIfECc6/SHVeXyq9/jV1B1QhCa8+GCaitTXK1BfL23YIEly5OcrYcYMuWbMkHPiRMYAAnGAwAfYVCgSUYM3oPouv+q9fnlpxcM+kYYG+Rsa5H/9dRkpKXJNn743AE6dundBaQC2Q+ADbKTdH+ztpm2mFQ+DYHq9Cm7apOCmTZLTKVdxsVwzZihh5kw5srKsLg/ACDFMcxj7EgGICqZpqrk7qKrObtV1+dQdYpmUwVj+t99bXUJMcOTl/afrd9Ikun6BGEYLHxCDOv0hVXZ0q6qzm65ajJpIY6P8jY3yl5bKSE1Vwty5cs+fL2dhodWlARgiAh8QI3yhsKo7fKrs6FabPzjwDwAjyPR4FFi3ToF16+QYN04J8+fLPX++HJmZVpcGYBDo0gWiWCgSUW2nT5UdPjV6/ayNN0Lo0h05zpISuefPV8Ls2Uz4AKIYgQ+IMqZpqt7rV1V7t2q7/ArzEh1xBL5R4HIpYeZMJcyfL9e0aTIcDqsrArAfunSBKNHqC6iyo1vVHT72qEXsCYUU3LJFwS1b9o73mzNHCUcdJRfj/YCoQOADLBSOmKrs6NauVo86AiGrywFGhOnxKLB+vQLr18s5YYLcixcrYe5cGU6n1aUBcYsuXcACvlBYu9q8Km/z0ppnAbp0x56Rmir3woVyH3usHOnpVpcDxB0CHzCG2nxB7Wz1qLqzm0WRLUTgs5DDoYQ5c+RevFiuoiKrqwHiBl26wCgzTVN7uvza2epRU3fA6nIAa0UiCn7wgYIffCBnUdHe7t7Zs+nuBUYZLXzAKAlGIqpo3zs+z8PiyFGFFr7oYqSlyX3ssXu7e1NTrS4HsCUCHzDCPMGQdrV6Vd7uVYh+26hE4ItSTqcS5s5V4gknyFlQYHU1gK3QpQuMkCZvQDtbPdrT5WOBZGA4wmEFN21ScNMmuY48UkknnSTnhAlWVwXYAoEPOEzN3QFtaexkfB4wgkIffqiuDz+Ua8YMJZ50EhM8gMNE4AOGqd0f1JbGTtV5/FaXAthW6KOPFProI7mmTlXiySfLNWmS1SUBMYnABwxRVyCkrU2dqu70WV0KEDdCu3YptGvX3uB36qns4AEMEYEPGKTuYFjbmrtU0e5ljB5gkd7gN3Omkj7xCSZ3AINE4AMG4A9H9FFzl3a1eVgsGYgSoe3b1bV9uxLmzFHiKafIOW6c1SUBUY3ABxxCMBLRzhaPdrR6WF4FiFLBLVsU3LpV7qOPVuLy5XKkpFhdEhCVCHzAx4Qjpna3ebS9xaMA+9wC0c80FXj3XQW2blXSSSfJfdxx7NwBfAyBD9jHNE2Vt3frw+ZOdYcIekDM8fnkW7NGgXfeUdKKFUqYPt3qioCoQeADtHfR5E0N7Wr3h6wuBcBhijQ3y/vgg3JNm6akFSsY3weIwIc45wuFtbmxU5Ud3VaXAmCEhXbuVNfu3XIvWqSkU06RkZRkdUmAZQh8iEumaWpXm1fbmjoVZEIGYF+RiALr1in4wQdK/MQn5F64UIZhWF0VMOYIfIg7zd6ANtJ9C8QV0+uV76mnFNiwQclnnilXSYnVJQFjisCHuOEPR/RBQwfdt0Aci9TXy3P//UqYO1dJZ54pR2qq1SUBY4LAh7hQ2e7VB42d8rPMCgBJwc2bFdq9W0krV8o9d67V5QCjjsAHW/MEQnqvvl0N3oDVpQCIMqbXq+7HHlNwyxYln3WWHOnpVpcEjBoCH2wpYpra2eLRtuYuhU0mZQA4tNCHH6qrvFxJK1bIvWCB1eUAo4LAB9tp9QX1bl0bkzIADJrp86n7ySf3tvZ98pNyZGZaXRIwohxWFwCMFNM09WFzp16uaCLsARiW0M6d6vztb+XfsEEmvQOwEQIfbMEbDOu1qhZtbeoSb9EADovfL99TT8mzerUira1WVwOMCAIfYl51Z7deKG9UUzcTMwCMnHBZ2d7WvnXraO1DzCPwIWaFIhG9s6dN62vb2C0DwOgIBuV79ll5/vIXRTo7ra4GGDYCH2JSqy+gF8ubVMEiygDGQLi8XF333KPgrl1WlwIMC4EPMcU0TW1v7tLLFc3qCoatLgdAHDE9HnkfeEC+F16QGWERd8QWlmVBzOgOhbVhT5saWUQZgIX8r7+uUGWlUi68UI6MDKvLAQaFFj7EhNpOn14obyTsAYgK4cpKdf3udwru2GF1KcCgEPgQ1UIRU+/Vteut2lYFwkzMABA9zO5ueR98UN1r1sgMM8QE0Y0uXUStNl9Qb+9pU2eARZQBRK/Am28qXFW1t4s3K8vqcoCDooUPUam6s1uvVDYT9gDEhHB19d5ZvB9+aHUpwEER+BBVTNPU1qZOra9tU5iFTgHEENPnk/fhh9X9zDPM4kXUIfAhaoQiptbVtunD5i6rSwGAYQusXy/PAw/I7GadUEQPAh+igjcY1iuVTart8lldCgActnBZmbr+9CeFm5utLgWQROBDFGjuDuiliia1+xmvB8A+Is3N8vzxjwqVlVldCkDgg7Uq2r16rapZ/jDjXQDYj+nzyfPAA/Jv2GB1KYhzBD5YwjRNfdDQoXfq2hVhbgYAO4tE5HvqKXU/+yyTOWAZAh/GXDAS0Zs1rdrR6rG6FAAYM4F16+R96CGZfr/VpSAOEfgwpjyBkF6paFadhzc8APEntHOnuv70J0VaW60uBXGGwIcx0+j166XKJnWwmDKAOBZpbFTXH/+oUGWl1aUgjhD4MCbK2rx6vaqF/XABQJLp9crzl78osHGj1aUgThD4MOo+au7Se/XtIuoBwH7CYXU/+aT8paVWV4I4QODDqNrS1KnNTZ1WlwEAUcv3/PPyvfii1WXA5gh8GDXvN3RoO9ukAcCA/K+9tncPXvYQxygh8GHEmaapd+vatJNlVwBg0ALr16v7n/9krT6MCgIfRlTENLVhT5vK29k0HACGKrhxo7yPPSYzHLa6FNgMgQ8jJhwxta62VVWdPqtLAYCYFdq6de8CzcGg1aXARgh8GBGhiKk3a1q0p4sFlQHgcIV27ZLngQfYlQMjhsCHwxYMR1Ra3aIGb8DqUgDANsKVlfLcf78iXq/VpcAGCHw4LIFwRK9Vt6i5m7AHACMtvGePPPfeq0gny1vh8BD4MGy+UFivVjarzcc4EwAYLZGmJnX9+c+KtLVZXQpiGIEPw+IN7g177IsLAKPPbGuT5y9/oaUPw0bgw5D1hL2uIMsGAMBYibS2yrN6NWP6MCwEPgyJPxRRaXWzvCHCHgCMtUhjo7x//SuzdzFkBD4MWigS0Rs1LeoMEPYAwCrh2lp5HnyQdfowJAQ+DErENPVWTatamaABAJYLV1bK+8gj7MiBQSPwYUCmaertPW2sswcAUSS0c6e8jz/O3rsYFAIfBrSpoUM1bJcGAFEntHWruv/1L5mmaXUpfZimqdNOO00rVqw44LK7775bWVlZqq6utqCy+EXgQ7+2NnVqdxszwgAgWgU3bpTv2WetLqMPwzB07733at26dbrnnnt6j5eVlek73/mO7rrrLk2cONHCCuMPgQ+HtKvVow+bu6wuAwAwgMD69fK98ILVZfQxadIk3XnnnbruuutUVlYm0zR11VVX6YwzztDRRx+tlStXKi0tTQUFBfrc5z6npqam3p999NFHNW/ePCUnJys3N1ennXaaPB6Phfcm9hH4cFDVHd3a1NBhdRkAgEHyv/66/KWlVpfRx+WXX67ly5fryiuv1K9//Wtt3rxZ99xzj0499VQdffTR2rBhg5599lnV19frkksukSTt2bNHl112ma688kpt27ZNL7/8sj71qU9FXbd1rDFMHkF8TL3HrzdrWhThmQGbWv6331tdAjBqks8/X+6jjrK6jF4NDQ2aM2eOWlpa9Nhjj2nz5s167bXX9Nxzz/WeU11drUmTJmn79u3q6urSwoULVV5eruLiYgsrtxda+NBHS3dA62paCXsAEKO6//UvhSorrS6jV35+vr70pS9p1qxZOv/887Vp0ya99NJLSktL6/068sgjJUm7du3SUUcdpeXLl2vevHm6+OKL9Yc//EGtra0W34vYR+BDr05/SG/UtChEoy8AxK5wWN6HH1akrc3qSnq5XC65XC5JUldXl8455xxt3Lixz9eOHTt00kknyel0au3atXrmmWc0e/Zs3XXXXZo5c6bKysosvhexjcAHSXv3x329ulmBMGEPAGKd6fXK89BDUbkF2zHHHKMtW7aopKRE06ZN6/OVmpoqae8s36VLl+rGG2/Ue++9J7fbrX/84x8WVx7bCHxQOGLqzZoWdYdYvBMA7CLS0CDvY49F3cLM11xzjVpaWnTZZZfp7bff1q5du/Tcc8/piiuuUDgc1rp163TzzTdrw4YNqqys1OOPP67GxkbNmjXL6tJjGoEPere+Xe3+kNVlAABGWGjHDvnWrLG6jD4KCwtVWlqqcDisM844Q/PmzdO1116rrKwsORwOZWRk6NVXX9VZZ52lGTNm6Pvf/75uu+02rVy50urSYxqzdOPczlaP3mf5FcQZZuki3iR/8pNyL1xodRmwEC18cazR69cHhD0AsL3up59WiEkPcY3AF6e8wbDW17aJ5l0AiAORiLyPPKJwc7PVlcAiBL44FI6Yequ2Vf5wdA3kBQCMHtPnk/fBB2V2d1tdCixA4ItD79W3q80XtLoMAMAYi7S0yPP3v0fdzF2MPgJfnNnV6lFlB3/dAUC8CpeVRd3MXYw+Al8cafIGmJELAFBg3ToFt261ugyMIQJfnOgOhrWutpVJGgAASZL3n/9UuKXF6jIwRgh8cSBiMkkDAPAxfr+8jzwiM8TC+/GAwBcHNta3q5VJGgCAj4nU16v76aetLgNjgMBnc7vbPCpvZ5IGAODggu+9p8CmTVaXgVFG4LOxNl+QSRoAgAF1P/WUwk1NVpeBUUTgs6lwxNSGPW2KMEsDADCQYFDexx5jPJ+NEfhsamtTpzoCvHABAIMTqauTb+1aq8vAKCHw2VCT168drR6rywAAxJjA+vUKbt9udRkYBQQ+mwlGItpQ1251GQCAGNX95JOKdDD+224IfDbzfkOHvMGw1WUAAGKU2d0t7z/+IdNkELidEPhspLbLpwqWYAEAHKZwebkCb79tdRkYQQQ+m/CHwnqPrlwAwAjxPf+8Im1tVpeBEULgs4n36tvZOg0AMHKCQXn/+U+rq8AIIfDZQEW7V7VdfqvLAADYTLisTIF33rG6DIwAAl+M8wbD2sRuGgCAUdK9di2zdm2AwBfDTNPUO3VtCrGdBgBgtPj96v7Xv6yuAoeJwBfDdrV61egNWF0GAMDmQjt3KrBxo9Vl4DAQ+GJUhz+ozU00sQMAxobvuecU6ey0ugwME4EvBpmmqXfr2kVPLgBgrJg+n7qfesrqMjBMBL4YVNHRrRZf0OoyAABxJrR9uwKbN1tdBoaBwBdjguGItjTSpA4AsIbvmWcU8XisLgNDROCLMVubO1lgGQBgGdPrle/ZZ60uA0NE4Ish7f6gdrd6rS4DABDngps3K1RebnUZGAICXwzZVN8h5mkAAKJB93PPyTT5VIoVBL4YUd3RraZu1twDAESHSF2dgu++a3UZGCQCXwwIRSL6oJE19wAA0cX34osyfT6ry8AgEPhiwIfNXeoOMVEDABBdTK9XvldesboMDAKBL8p1BULa2cr0dwBAdAqsX69wU5PVZWAABL4ot6mhgx01AADRKxKR77nnrK4CAyDwRbE9XT7Ve/xWlwEAQL9CO3cquGOH1WWgHwS+KBWOmHq/gYkaAIDY4HvuOZnhsNVl4BAIfFFqR2uXPEFeOACA2BBpblZg/Xqry8AhEPiikDcY1vZmJmoAAGKL75VX2Gc3ShH4otC2pk6FWb0cABBr/H75XnzR6ipwEAS+KNMZCKmyo9vqMgAAGJbge+8p3NxsdRn4GAJflNnW1Ml+uQCA2GWa8rMYc9Qh8EWRdn9Q1Z1sUQMAiG3BzZtZjDnKEPiiyNamTqtLAADg8Jmm/K++anUV2A+BL0q0+gLa08UiywAAewhu3qxwY6PVZWAfAl+U2NLYZXUJAACMHFr5ogqBLwo0dwfU4KV1DwBgL8EtW2jlixIEviiwrYnWPQCADTFjN2oQ+CzWQuseAMDGglu3KtzQYHUZcY/AZ7EPm2ndAwDYGGP5ogKBz0JtvqDqPLTuAQDsLbhlC618FiPwWYjWPQBAvPAxls9SBD6LdPiDqu1iVw0AQHwIbd2qcH291WXELQKfRWjdAwDEG/9bb1ldQtwi8FnAGwyphj1zAQBxJvjBB4p4PFaXEZcIfBbY3eaVaXURAACMtXBYgXfesbqKuETgG2PhiKny9m6rywAAwBKBDRtkhsNWlxF3CHxjrKazW4FwxOoyAACwhNnZqeDWrVaXEXcIfGNsV5vX6hIAALBUYN06q0uIOwS+MdTqC6rVF7S6DAAALBWuqVGopsbqMuIKgW8M7W5lZhIAABKtfGONwDdGAuGIqjuZrAEAgLR3u7VIZ6fVZcQNAt8YKW/3KsxaLAAA7BWJKLBhg9VVxA2X1QXEA9M0VcZkDQDo45evvaZ/bdumHU1NSnK5dNykSbrx9NM1fdy43nPKWlr0/TVr9FZlpQKhkJZPm6ZbzjpL+Wlp/V53bUeHbli7Vmt37lR3MKgpOTn6zXnn6eiiIknSXaWlurO0VJL0jWXL9LUlS3p/dkN1tb711FN64eqr5XI6R+Geo0fgnXeUeOKJMlzEkdFGC98YqPf45Qmy5hAA7K+0vFxXL1qktVdfrX98/vMKRSK6YPVqeQIBSZInENAFq1fLkPTPyy/Xs1ddpUA4rEsffFCRyKGXt2rr7taKP/1JLqdTj37mM3rrmmv0kzPOUFZysiRpc12dbn7pJf3poov0p4su0k9ffFFb9u3xGgqH9c1//1u3f/KThL0xYHo8Cm7ebHUZcYFIPQZYigUADvTY5z7X5/u7zz9f0269VRtra7W0pETrKitV2damV7/0JWUkJUmSfnvBBSr5+c/1almZTpk69aDXe8frr2tiZqbuPv/83mMl2dm9/9/R1KQ5BQU6ecoUSdKcgoLeY7964w0tKS7WMftaAjH6/OvWyb1ggdVl2B4tfKPMEwip3uO3ugwAiHodvr17jGfva4nzh8MyJCXu192X5HLJYRh6s7LykNfzzPbtWlBYqMsfeUTTbrlFJ/7ud7p/v+28ZhcUaGdzs6ra2lTZ1qadzc2alZ+vspYW/fW99/T9U08dnTuIg4rU1Sm8Z4/VZdgegW+U7aZ1DwAGFIlEdP2zz+r4SZM0u6BAkrRo4kSlut360dq18gYC8gQC+v6aNQqbpuq7ug55XeWtrfrz229rak6OHvvc53TVscfqu888owc3bpQkzczL0w+XL9cFq1frU6tX60fLl2tmXp6u/de/dOPpp+vFnTt1wm9+oxN/9zuVlpePwb1HYNMmq0uwPbp0R1E4YqqincAHAAO57umntbWhQc9eeWXvsXGpqbrv4ov13089pXvWrZPDMHThvHk6asIEOQzjkNcVMU0dXVioH552miTpqAkTtLWhQfdu2KBP7+s6vHLRIl25aFHvzzy4caPSEhN13KRJOvauu/TSF7+omo4OXfXoo9p07bV9Whkx8oKbNyvpjDNkOGiHGi08g0dRVWe3AhHWYgGA/nz7qaf03Ecf6akrrlBRZmafy06dNk0bv/ENNXs8cjocykpO1oxbb1XJ3LmHvL6C9HTNzMvrc2xmXp7+tW3bQc9v9nj0i5df1tNXXKEN1dWalpurqfu+gpGIdjY3a86+VkeMDtPjUWjXLiVMn251KbZFlB5Fle0stAwAh2Kapr791FP694cf6p+XX95nYsXH5aamKis5Wa/s3q1Gj0crZ8485LnHT5qknc3NfY7tbG7WpI+FyR7XP/ecvnLCCSrKzFTYNBXcbwZwKBJRuJ8ZwRg5wffft7oEWyPwjZLuUFhN3QGrywCAqHXdU0/p4fff1x8uvFBpbrfqOztV39mp7uB/9hx/4L339HZVlcpaWvTwpk1a9fe/6ysnnNBnrb5z779fv99vm66vnHCC3q6u1m2vvqrdzc36+/vv6/533tHVxx13QA0v7dqlXc3N+sK+7t1jCgu1o6lJa3fs0H0bNshpGH1uC6Mn+OGHMv1MchwtdOmOktpOn9UlAEBU+9O+XRY+ed99fY7/5rzz9Jmjj5Yk7Wxq0k3PP6/W7m5NzsrSt048UdeccEKf88taWtTs/c946WOKivTAf/2XbnrhBd3yyisqzs7Wz848U5fMn9/n57qDQX376af154sukmPf2LGizEzdsnKlrnniCbldLv32gguUnJAw0ncdBxMKKbh1q9z7fvcYWYZpmgwyGwWvVDapuTs48IkAxtzyv/3e6hIAHISzpERpl19udRm2RJfuKPAGw4Q9AACGKFxerkh7u9Vl2BKBbxTUdDJZAwCA4QgweWNUEPhGQTXj9wAAGBZm644OAt8I8wRDavXRnQsAwHBEmpoUqqmxugzbIfCNsJoOWvcAADgctPKNPALfCKM7FwCAwxPcskUsIjKyCHwjqCsQUpuf7lwAAA6H6fEoXF1tdRm2QuAbQbTuAQAwMkIffWR1CbZC4BtBLMcCAMDICBL4RhSBb4R0BkJq94esLgMAAFuINDQo0tZmdRm2QeAbIdUdtO4BADCSaOUbOQS+EVLD+D0AAEYU4/hGDoFvBHgCIXUE6M4FAGAkhcrLZfr9VpdhCwS+EdDgDVhdAgAA9hMOK7Rrl9VV2AKBbwQ0ePnrAwCA0cA4vpFB4DtMpmmqkRY+AABGRWjHDnbdGAEEvsPU7g8pEI5YXQYAALZker3sujECCHyHqZHuXAAARhWzdQ8fge8wMWEDAIDRxTi+w0fgOwwR01QTgQ8AgFEVaWhQpLPT6jJiGoHvMLR0BxRmICkAAKMuXFlpdQkxjcB3GOjOBQBgbIQIfIeFwHcYGjxM2AAAYCwQ+A4PgW+YgpGIWn1Bq8sAACAuROrrZfrYt364CHzD1OQNiNF7AACMEdNUqKrK6ipiFoFvmNhdAwCAscXEjeEj8A0T4/cAABhbjOMbPgLfMPhCYXUEQlaXAQBAXAnX1MgM8fk7HAS+YWCxZQAALBAOK1xba3UVMYnANwxtfmbnAgBghVBFhdUlxCQC3zC0sRwLAACWYOLG8BD4hqHNz/gBAACsEKqqksm2pkNG4BsibzCsQDhidRkAAMQnv1+R+nqrq4g5BL4hamf8HgAAlgrX1FhdQswh8A0R4/cAALBWuK7O6hJiDoFviJihCwCAtQh8Q0fgG6J2HxM2AACwUrihgYkbQ0TgG4JAOCJvKGx1GQAAxLdAQJGWFquriCkEviFg/B4AANGBbt2hIfANATN0AQCIDhEC35AQ+IaABZcBAIgO4YYGq0uIKQS+IWinSxcAgKhA4BsaAt8ghSOmOgO08AEAEA3MtjaZQRpiBovAN0jt/qCYAA4AQPSINDZaXULMIPANEgsuAwAQXcIEvkEj8A1SJxM2AACIKozjGzwC3yCx4DIAANGFLt3BI/ANkjdI4AMAIJpEmputLiFmEPgGicAHAEB0iXR0WF1CzCDwDUIoElEwwhxdAACiSiikiMdjdRUxgcA3CLTuAQAQnSLt7VaXEBMIfINA4AMAIDqZBL5BIfANAoEPAIDoRAvf4BD4BoElWQAAiE4EvsEh8A0CLXwAAEQnAt/gEPgGgcAHAEB0Ygzf4BD4BoEuXQAAohMtfIND4BtAxDTlC0WsLgMAAByE6fHIDLHf/UAIfAPopjsXAICoRivfwAh8A6A7FwCA6MY4voER+AbAhA0AAKIbLXwDI/ANgMAHAEB0i3R2Wl1C1CPwDcAfZsIGAADRzPT5rC4h6hH4BhCKmFaXAAAA+kHgGxiBbwChCC18AABENb/f6gqiHoFvALTwAQAQ3UwC34AIfAMIEvgAAIhqdOkOjMA3AFr4AACIbrTwDYzANwDG8AEAEN1o4RsYgW8AtPABABDdaOEbGIFvAAQ+AACiXDAokx65fhH4+hGOmCLuAQAQ/ejW7R+Brx9B/loAACA20K3bLwJfP+jOBQAgNtDC1z8CXz8IfAAAxAYmbvSPwNcPAh8AALGBFr7+Efj6wRp8AADECD6z+0Xg6wctfAAAwA4IfP1gH10AAGAHBL5+sAofAACwAwJfPxwyrC4BAADgsBH4+mGQ9wAAgA0Q+PrhIPEBAAAbIPD1g7wH2NOm8y5Ty5KTFJk8WXLwNgjA/lxWFxDNDMbwAbbUlJyupslHSpOPVFIooCNa6jSutkLuinKpu9vq8gBgxBH4+uEg7wG253O5tS1/spQ/Wcb8pZrU1awJddVKqyyTmpqsLg8ARgSBrx+M4QPii+lwqDIjT5UZedKMo5Xj82hyY7WyqivkrK6SwmGrSwRwKCZLqfWHwNcP4h4Q31qSUtUyaaY0aaYSw0GVtNQrv7ZC7ooyyeu1ujwAGDQCXz/o0gXQw+9M0Pa8idqeN1Gav0QTO1tUVF+l1MpyGY0NVpcHAP0i8PXDoEsXwMEYhqozclWdkStNX6BMv1cljTXKrqmQs7KCrl8AUYfA1w/iHoDBaE9M0aaJ06WJ05VwbEglbfXKr61SUsVuqavL6vKA+OAi0vSHR6cfTNoAMFRBp0s7cou0I7dImrtYhZ42TayrUlpVuYz6OqvLA2zLSEy0uoSoRuDrB2P4ABwWw1BtWrZqp2VL0+YrI9Ct4sYa5dRUylVZLoVCVlcI2IaRlGR1CVGNwNcPxvABGEkd7mR9UDRNKpqmhIUhTW5r0Pi6KiWV75Y6O60uD4hptPD1j8DXDzZcAjBagk6XduUWalduoTRnscZ72jSxvloZVWUy9uyxujwg9hD4+kXg6wctfADGSl1qluqmZElT5iot4FNJU61ya/d1/QYCVpcHRD26dPtH4OuHi0F8ACzQ5U7S5sIpUuEUOY8Jq7itQePrqpVcsVtqb7e6PCD6JCTIcNAv1x8CXz8SHIYMSWzWAsAqYYdTu3MmaHfOBGn2IhV42jWxsVqZleUy9tSynRQgxu8NBoGvH4ZhKMHpUCAcsboUAJAk1admqj41UyqZo5SgX0c071FuTYUSKsslv9/q8gBLEPgGRuAbgNtpKMCi+QCikDchUVvGl0jjS+Q4+kQVdzRqfF21Usp3S22tVpcHjBnG7w2MwDeARKdDXSLxAYhuEYdDZVkFKssqkI5cqHHdHZrcUKPMqnI5amukCD0VsC9a+AZG4BuA28kgUACxpyk5Q03FGVLxLCWHAipp3qO82kolVJRJPp/V5QEji8A3IALfAAh8AGJdt8utbQXF2lZQLMdRSzWps1kT6qqUWlEmtTRbXR5w2GjhGxiBbwBupnkDsJGIw6GKzDxVZOZJM49RTneXihtrlFVdLkd1FV2/iEmM4RsYgW8AiS4CHwD7aklOU8vkmdLkmUoKBVTSUqe8PZVyV5RLXq/V5QGDYiQnW11C1CPwDSCJLl0AccLncuvD/Mn6MH+yNH+pJnU0q7C+WmlVZVJjo9XlAYfkyMiwuoSoR+AbQJLLaXUJADD2DENVmeNUlTlOmrFA2X6PJjfWKLu6Qs6qSinM6gWIHo7MTKtLiHoEvgEk0aULAGpNTFXrxBnSxBlyHxvSEW11yqutVGJFmeTxWF0e4pxB4BsQgW8AtPABQF8Bl0vbx03U9nETpXknqKirRUX11UqrLJfRUG91eYhDdOkOjMA3ALfTIachhdmuEgAOZBiqSc9VTXquNO0oZfq9Km6qVU5NhZyVFVIoZHWFsDkjNVWGizgzEB6hQUhyOeUJMl4FAAbSnpii94umSUXTlLAwpOK2BhXsqVRSeZnU1Wl1ebAhxu8NDoFvEJJcDgIfAAxR0OnSztxC7cwtlOYs1gRPmybWVyu9qkxGXZ3V5cEmGL83OAS+Qdg7ji9odRkAELsMQ3vSsrUnLVuaOk/pgW6VNNUqp6ZSrspyKch7LIaH8XuDQ+AbhNQEJm4AwEjqdCfrg8KpUuFUuRaGVNzWqII9lUquKJM6OqwuDzGELt3BIfANQpqbhwkARkvI4dKunAnalTNBmrNY4/d1/WZUl8vYs0cymTWHQyPwDQ5JZhDSCXwAMGbqUrNUNyVLmjJXaUG/iptqNa62Qq6KcikQsLo8RBnG8A0OSWYQCHwAYI2uhERtmXCENOEIOY8Oq7i9UQV1VUqpKJPa2qwuD1GAFr7BIckMgtvpUKLTIX84YnUpABC3wg6ndmeP1+7s8dKsRcrzdmhyQ7UyqsrlqK2h6zceOZ0yUlOtriImEPgGKd3tkr+brgQAiBaNKRlqLJktlcxWSsivkqY9GldbqYSKMsnvt7o8jAFHZqYMw7C6jJhA4BukdLdLTQQ+AIhKXleito4vkcaXyLFgmSZ1NKmwp+u3tcXq8jBKHPn5VpcQMwh8g5SeyEMFALEg4nCoIitfFVn50pELNa67U5Maa5RVVS5HTbUUYXiOXTgJfINGihkkJm4AQGxqSk5X0+QjpclHKikU0BEtdRpXWyF3RbnU3W11eTgMBL7BI8UMEoEPAGKfz+XWtvzJUv5kGfOXalJnswrrq5VasVtqbra6PAyRo6DA6hJiBilmkJJdDjkNQ2FmgQGALZgOhyoz81SZmSfNOFo5Po8mN1Qrq6ZCzuoqKcwe6lHN5ZIjJ8fqKmIGgW+QDMNQutupNn/I6lIAAKOgJSlVLZNnSpNnKjEcVElLnfJrK+WuKJO8XqvLw8c4xo2T4XBYXUbMIPANQbrbReADgDjgdyZoe94kbc+bJM1foomdLSqqr1Za5W6psdHq8iDG7w0VgW8I0hNdUqfVVQAAxpRhqDojV9UZudL0o5Tp96qksUbZ1eVyVlXS9WsRAt/QEPiGgIkbAID2xBRtmjhdmjhdCYtCOqK1Tnl7qpRUXiZ5uqwuL24wYWNoSDBDQOADAOwv6HTpo3ET9dG4idLc41XoadXEumqlVZXLqK+zujxbo4VvaEgwQ5DmdsmQxDxdAMABDEO1aTmqnZYjTZuvjIBXxY17lFtTLmdlhRRiDPhIMZKS5MjIsLqMmELgGwKHYSgj0aV2Jm4AAAbQ4U7RB0VTpaKpSlgYUnFbgwr2VCmpYrfUyYDww0F37tAR+IYoN9lN4AMADEnQ6dLO3ELtzC2U5i7W+K5WTWyoUUZVmYw9e6wuL+bQnTt0BL4hyk12a3cb6zEBAIavLi1bdWnZ0pS5Sgv4VNJcq9zqCrkqy6Vg0Oryop6TFr4hI/ANUW5ygtUlAABspMudpM0TpkgTpsi5MKzitkaNr6tUckWZ1N5udXlRyTlxotUlxBwC3xClJLiU5HLIF4pYXQoAwGbCDqd254zX7pzx0uzjVOBp18SGamVWl8uorZXY3nPvhA26dIeMwDcMuclu1XT6rC4DAGBz9amZqj8iUzpijlKCfh3RvEe5NRVKqCyX/H6ry7OEc9IkGYZhdRkxxzBN/lwYqp2tHr3f0GF1GQCAOOWIRFTc0ajxe6qUUlEmtbVaXdKYSVy+XEnLllldRsyhhW8YcpPdVpcAAIhjEYdDZVkFKssqkGYdq7zuDk2qr1FmdbkcNdW27vp1TZ5sdQkxicA3DJmJLjkNQ2Ebv6AAALGjMTlDjSUZUsksJYcCKmneo7zaSiVUlEk+Gw1BcrnkLCqyuoqYRJfuML1W1axGb8DqMgAAOCRHJKJJnc2aUFep1IpyqaXZ6pIOi3PyZKVdcYXVZcQkWviGKTfZTeADAES1iMOhisw8VWTmSTMXKqe7S8WNNcqqLpejukqKxNaKE3TnDh+Bb5gYxwcAiDUtyWlqmTxTmjxTSaGASlrqlLenUu7yMqm72+ryBuQk8A0bgW+YcpJYgBkAELt8Lrc+zJ+sD/MnS/OXalJHswrrq5VWuVtqarK6vAMZhlyTJlldRcwi8A1TgtOhzEQX++oCAGKfYagqc5yqMsdJMxYo2+fZ2/VbUyFnVaUUDltdoRz5+TKSkqwuI2YR+A5DTrKbwAcAsJ3WpFS1TpohTZoh97EhHdG6R3l7qpRYUSZ5PJbUROve4WGW7mGo7OjWhj1tVpcBAMDYME0VdbWoqL5aaZVlMhoaxuymkz/1KbnnzRuz27MbWvgOwzgmbgAA4olhqCY9VzXpudK0o5Tp96q4sUY5PV2/odHr9XIVF4/adccDAt9hSElwKsPtUkeAbl0AQPxpT0zR+xOnSxOnK+HYkEpa65VfV6Wk8t1SV9eI3Y4jP1+OjIwRu754RJfuYdrS2KHtLdaMZwAAICqZpgo9rSqqr1F6VZmMurrDujr3kiVKPv30ESouPtHCd5gmpCUR+AAA2J9hqDYtR7VpOdLUeUoPdKukqVY5NRVyVVZIweCQri5h+vRRKjR+EPgOU3ZSghKdDvnDsbVaOQAAY6XTnawPCqdKhVPlWhhScVujCvZUKrmiTOro6P+HExNZcHkE0KU7At6pa1NFe/SvUA4AQLQZ72nTxPoaZVSVyajbI30slrhmzVLqJZdYVJ190MI3AiakJRH4AAAYhrrULNVNyZKmzFFa0K/iplqNq6mQq7JcCgSUMG2a1SXaAi18IyAcMfXvnXUK80gCADAinJGwitubNHfedLlSU60uJ+Y5rC7ADpwOQ3kpiVaXAQCAbYQdTrVOmEjYGyEEvhEyIY39/QAAGEl8to4cAt8ImZBGCx8AACOpkM/WEUPgGyFJLqeykxKsLgMAAFtIS3AqI5HP1ZFC4BtBtPIBADAy6M4dWQS+EcSTEwCAkVHIZ+qIIvCNoMzEBKUkOK0uAwCAmJbodCgnme7ckUTgG2ETUunWBQDgcExIS5RhGFaXYSsEvhFGty4AAIdnckay1SXYDoFvhOWluJXs4mEFAGA4UhOcyk12W12G7ZBMRphhGPxlAgDAME3OSKY7dxQQ+EZBcWaK1SUAABCT+AwdHQS+UZDmdtEcbYH/d+pxuvDIwgO+/nDT9ZKkgN+nP9x0vS5fPEefOWaabvna1Wprahz09d/zo+/qwiML9e/7/9B7LBjw687vfE2fXThDX12xTJveeLXPzzzxp7v1xx//78jcQQCwubwUN6tdjBKX1QXYVXFmspq7A1aXEVd+8egzioTDvd9X7vhQN115qU5YcY4k6d6f3aB3X3le1915j1LSMvTHH/+vbvnaVbr5oX8OeN3r1j6jjza9o5z88X2Or334Ae3e8r5u/tu/9N6rL+qO667Rn0vfl2EYqq+u1POPPKhbHntmZO8oANhUMUOiRg0tfKNkYnqSXIxBGFOZObnKzsvv/Xrn5ec1fnKJ5hx3gjydHXrxsYe06rs3aN7xyzR17nxd87Nfavt7G/TRxnf6vd7m+j3640++r2/c+hs5XX3/RqrevVPHnnqGJk+fqTM/s0odLc3qaG2RJP3+hv/R5677X6WkpY/afQYAu3A5DBWmE/hGC4FvlLgcDhWls0SLVYKBgF7952M69VOXyjAM7d7yvkLBoOYvObH3nIlTpmtcYZG29xP4IpGIfvWdr+u8q76sydNnHnB5yczZ+vCd9fL7urXx9ZeVnVegjOwcvfqvx5WQmKjFp68clfsHAHZTlJ4kl4OGktFCl+4oKs5MUUVHt9VlxKX1LzwrT2eHPnHBJZKktsYGuRLcSs3I7HNeVm6e2poaDnk9T/zhN3I6nTr7c1cd9PJTL7xUFR9t1bVnn6L07Bx9647fqau9TX/71a266S+P6sE7fqHSp59UwaRiXXPzL5VbMGHk7iQA2EhxBpM1RhOBbxSNS3ErLcGprmB44JMxol549CEdfeInlFMwfuCTD2HX5vf11Oo/6tbHnjvkEgGuhAR94Yc/63Ps19dfq7M+d5XKtm3W+hee1W1PPK8n/vgb/eknP9B37vrjsOsBALtKTXBqXAqTHUcTXbqjjOnlY6+hplofvPmaTrv4073HsvLyFQoG5Olo73NuW3OjssblH/R6tr2zTu3NTfrSqYt08ZxJunjOJDXWVuv+X9yo/3fqcQf9mQ/eKlXVzo+08jNXaPO6N3XMSacqKSVFS1aeqy3r3xy5OwkANlKcydi90UYL3yibnJmsrU2dMq0uJI689PjflJE7TgtPPq332JQ58+VKSND7b76uE1acLUmq2b1TTbU1mrlg4UGv5+RzL9T8E07sc+zHV39aJ513oU694L8OOD/g9+mPP/6evnHrr+V0OhWJhKXQ3t98OBTc+z0A4ACT6c4ddbTwjbJkl1P5qYlWlxE3IpGIXvzHwzrl/Iv7zKhNTc/QqRdepvt+cYM+eKtUuza/r99875uauWChZuwX+L628kStW7t3GZX07BxNnnFkny+ny6XscfkqmjLtgNv++9136JiTTtWU2fMkSUces0hvrX1a5du36pm/3qsjj1k0yvceAGJPPmvvjQla+MZASWay6j1+q8uIC++/8aqaamu0/FOXHnDZFdffIIfD0P994wsKBvxasOyUA8bf1ZbtkqezY8i3W/nRh3rj2X/ptn+s7T12wopPasv6N/WDz1ygwiOm6tr/+83Q7xAA2Nxkhj6NCcM0TXobR1nENPX0rnoFwjzUAAD0SHAYOmtqgZwsxzLq6NIdAw7D0CQWkwQAoI+J6cmEvTFC4BsjJTRZAwDQx7TsVKtLiBsEvjGSmZSgPNYYAgBAkjQ+NVHpiUwlGCsEvjE0IyfN6hIAAIgKfCaOLQLfGCpITVQmf80AAOJcdlICO2uMMQLfGOMvGgBAvJuRw9i9sUbgG2MT05NYYBIAELdSE5wqTEuyuoy4Q+AbY4ZhaDqzkgAAcWpadqoMg6VYxhqBzwLFmSlyO3myAwDii9vpYJkyixD4LOByGJqSRSsfACC+TMlKYaFlixD4LDI1K1VOmrQBAHHCaez97IM1CHwWSXQ5VJzJdmsAgPgwOTNFiS5ih1V45C00PTtVtPEBAOIBExatReCzUKrbpaJ0pqYDAOytMC1JaW42HrASgc9iLMQMALA7Flq2HoHPYllJCcpnexkAgE3lJicoJ5nPOasR+KLAdFr5AAA2NSs33eoSIAJfVChITVRucoLVZQAAMKLyU9zKT020ugyIwBc15uVlWF0CAAAjai6fbVGDwBclcpLdKmIzaQCATUzKSFZWEr1X0YLAF0Xm5KWzLh8AIOY5DGnOOManRxMCXxRJc7s0JYtNpQEAsW1KVqpSElh3L5oQ+KLMkbnpcrGxNAAgRiU4DB2ZS+tetCHwRZlEl0MzWaYFABCjZuSkye0kXkQbfiNRaFp2qpLZYBoAEGOSXQ5NY8/cqESqiEJOh6HZ41ioEgAQW2aNS5eTYUlRicAXpSZnJCszkQGvAIDYkOF2qTgj2eoycAgEvihlGAYLVgIAYsacvHQZBq170YrAF8UKUhOVn8KG0wCA6DYu2a0JbB4Q1Qh8UY5WPgBAtJubx7jzaEfgi3JZSQmazJgIAECUKkpPUk4yvVHRjsAXA2aPSxeTngAA0cZpGJpH615MIPDFgJQEJ6uWAwCizpxx6WyhFiMIfDFiRk6aMty8qAAA0SE7KUFTs9n/PVYQ+GKEwzB0zPhMq8sAAECGpGMKMlmGJYYQ+GJITrKbLWsAAJabnpOqzKQEq8vAEBD4YszscelKSXBaXQYAIE6lJjg1K5eJGrGGwBdjXA5DRxfQtQsAsMbRBZnslxuDCHwxqCA1kbX5AABjbnJGsvJTE60uA8NA4ItR8/MzlOjk1wcAGBuJTofm57P7U6wiMcQoNy88AMAYmp+fITcNDTGL31wMm5SRrPE0rQMARllBaqImMZQophH4YtyCgky5GDwLABglTsPQ0QX0KMU6Al+MS0lwas44pscDAEbH7HFpbJ9mAwQ+G5iSlaLcZBbABACMrKykBBb8twkCnw0Yxt61+ejZBQCMFIchLWT7NNsg8NlERmICK58DAEbMvLwMtk+zEQKfjczISVVeitvqMgAAMa4wLUlT6cq1FQKfjRiGoWMnZLFOEgBg2FJcTh0zni087YZkYDPJLqcW8kIFAAyDIWlRIQ0HdsRv1IYmpCVpanaK1WUAAGLM7HHpyk1maJAdEfhsal5ehjITWTcJADA4+Sluzchh3J5dEfhsymEYOq4wW06m0wMABpDodOjYCVkswWJjBD4bS3e7tIDtcAAAA1g0IUtJLqfVZWAUEfhsrjgzRSWZbHgNADi4mTmpyk9NtLoMjDICXxw4Kj+T8XwAgAPkJidoNvuxxwUCXxxwOgwtLsxWAnuvAQD2cTsMLZqQzbi9OEHgixNpbpeOGZ9ldRkAgChxzPgspSQwbi9eEPjiSFF6kqaxVQ4AxL2pWSkqTE+yugyMIQJfnJmbl64cNsMGgLg1Ltmtefms4BBvCHxxxmEYOr4oW8lMvweAuJOW4NTxRdlyMG4v7hD44lCSy6klE7PlYhIHAMQNt8PQCRNz2Cc3TvFbH0GrVq2SYRj6+c9/3uf4E088EXWzoDITE7S4MFvRVRUAYDQYkhYXZSvdzRJd8YrAN8KSkpL0i1/8Qq2trVaXMqCC1EQdxU4cAGB7x4zPVF4KiyvHMwLfCDvttNM0fvx4/exnPzvkOY899pjmzJmjxMRElZSU6LbbbhvDCvuakpWq6czcBQDbmpGTquLMFKvLgMUIfCPM6XTq5ptv1l133aXq6uoDLn/nnXd0ySWX6NJLL9UHH3ygG264QT/4wQ903333jX2x+8zNS1dhGtPzAcBuCtOSNIedNCAC36i44IILtGDBAv3oRz864LJf/vKXWr58uX7wgx9oxowZWrVqlb761a/q1ltvtaDSvQzD0KIJWcpmuRYAsI3spAQtmpAVdWPIYQ0C3yj5xS9+ofvvv1/btm3rc3zbtm1aunRpn2NLly7Vjh07FA6Hx7LEPpwOQycUZSuF5VoAIOYluxw6oShbTlZjwD4EvlFy0kknacWKFbr++uutLmXQepZrYc9dAIhdLoehJUU5SuIPeOyH+dmj6Oc//7kWLFigmTNn9h6bNWuWSktL+5xXWlqqGTNmyOm0/sWZsW+5ltLqFplWFwMAGBJD0nETspTJEB18DC18o2jevHn6zGc+o1/96le9x771rW/phRde0I9//GN99NFHuv/++/XrX/9a1113nYWV9pWfmqgFBZlWlwEAGKJ5+RkazyQ8HASBb5TddNNNikQivd8fc8wxeuSRR/S3v/1Nc+fO1Q9/+EPddNNNWrVqlXVFHsQRWSmakcNyLQAQK6ZkpWgay2zhEAzTNOm5w0GZpqn1e9pU0+mzuhQAQD8mpicxIxf9ooUPh2QYho4dn6WCVFZnB4BoVZSWpGMJexgAgQ/9cjoMHV+YrfwUt9WlAAA+ZkJaohYVZslB2MMACHwY0N41+nKUR+gDgKhRkJqoxYXZhD0MCoEPg+Lct64ToQ8ArJef4tbxhD0MAYEPg9bT0jcumdAHAFbJS3HrhKIcdtHAkBD4MCQuh6ElE7OVm8yingAw1nKT3WyZhmEh8GHIXA6Hlk7MUQ4ruQPAmMlJStDSidlyOfjoxtDxrMGw9IS+bEIfAIy67KQELZ2YQ9jDsPHMwbAlOB1aRugDgFGVmejS0ok5SnDykY3h49mDw5Lg3NvSl5VI6AOAkZbhdmnZpFy5CXs4TDyDcNjcToeWTcpRZqLL6lIAwDbS3S6dOClHiYQ9jACeRRgRbqdDJ07KJfQBwAjITNwX9lxOq0uBTRimaZpWFwH7CIQjerOmRc3dQatLAYCYNG7f0iuM2cNIIvBhxIUjpt7e06baLp/VpQBATClMS9SiCayzh5FH4MOoME1T7zd2aFer1+pSACAmlGQm6+iCTBlsl4ZRQODDqNrR0qUPGjutLgMAotrMnFTNycuwugzYGIEPo666o1sb6toU4ZkGAAeYn5+hadmpVpcBmyPwYUw0eQN6s6ZFQVIfAEiSHIZ07IQsTUxPtroUxAECH8ZMhz+oN6pb5Q2FrS4FACzldjp0QlG2cpPdVpeCOEHgw5jqDoX1RnWL2v0hq0sBAEukJji1dGKO0tysW4qxQ+DDmAtFInqrpk0NXr/VpQDAmMpJStAJRTlKdLHGHsYWgQ+WiJim3qtrV0VHt9WlAMCYKEpL0rETslhjD5Yg8MFSW5s69WFzl9VlAMCompGTqjnj0lljD5Yh8MFyFe1ebaxvV5hnIgCbcTkMLRyfqSJm4sJiBD5EhXZfUOtqW9UVZAYvAHvIcLu0uChb6UzOQBQg8CFqBMMRvVPXzh68AGLepPQkHT0+Uy4HkzMQHQh8iDo7Wrq0ubFTPDEBxBqHIc3Ly9BUds5AlCHwISo1dwe0rrZVvlDE6lIAYFCSXQ4tLsxWDospIwoR+BC1/KGw3t7TpgZvwOpSAKBf+SluLZqQzfp6iFoEPkQ10zS1rbmLpVsARK2ZOWmaPS6NJVcQ1Qh8iAl1Hp827GlTgLVbAESJBIehYydkaUJaktWlAAMi8CFmeINhrattVasvaHUpAOJcZqJLxxdmK5UlVxAjCHyIKRHT1PsNHdrd5rW6FABxqjgzWQvyM9kiDTGFwIeYVN3Rrffq2xWM8PQFMDbcTocW5GdoYga7ZiD2EPgQs7qDYb1b3656j9/qUgDYXFFakhYUZCjR5bS6FGBYCHyIeRXtXr3f0EFrH4AR53YaWpCfSaseYh6BD7bQHQrrvbp21dHaB2CEFO5r1UuiVQ82QOCDrVR2dOv9+nYFaO0DMExup6Gj8jM1iVY92AiBD7bjC4W1sb5dtV209gEYmglpiTq6IJNWPdgOgQ+2VdXRrU0NHQqE2Y8XQP/cDkNHFdCqB/si8MHWfKGwNtV3qKbLZ3UpAKIUrXqIBwQ+xIXqzm5tqu+Qn9Y+APskOAwdlZ+hyZkpVpcCjDoCH+KGPxTRpoZ2VXfS2gfEu6L0JM3Pz1AyrXqIEwQ+xJ16j18fNHSoIxCyuhQAYywr0aX5+Zkal+K2uhRgTBH4EJdM01RZm1dbm7uY1AHEgUSnQ3Py0lWckSzDYA9cxB8CH+JaMBzRh81d2tXmEUv3AfbjMKRp2amamZumBIfD6nIAyxD4AEldgZA2N3awdh9gI4VpSZqXl65Ut8vqUgDLEfiA/TR6/Xq/oUPtfsb3AbEqM9Gl+fkZyktJtLoUIGoQ+ICPMU1TFR3d2trYKR/j+4CYkeh0aPa4dJVkMk4P+DgCH3AIoUhE25s92tHaxfg+IIo5DGlqVqqOzE1TgpNxesDBEPiAAXiDYW1u7GD9PiAKTUhL1Ly8DKUxTg/oF4EPGKTm7oC2NXWqwRuwuhQg7k1IS9TMnDTlJLOeHjAYBD5giFq6A9re0qU9zOgFxlxRepKOzElTZlKC1aUAMYXABwxTuz+oj5q7VN3pEy8iYPQYkiZlJGtmbprS6boFhoXABxymrkBIH7V0qbKjm8kdwAhyGNLkjGTNzEljLT3gMBH4gBHiDYa1o7VL5W3dCvOyAobNaUglmSmanpOmlASn1eUAtkDgA0aYPxTWzlaPdrd5FaTJDxg0l2HoiKwUTc9JVZKLoAeMJAIfMEqC4Yh2tXm0s9WrAAs4A4eU4DA0NTtV07JT5WYdPWBUEPiAURaKmCpv82pHa5e6QwQ/oEdaglNHZKWoJDOFBZOBUUbgA8aIaZra0+XX7javGrws6YL45DCkwrQkHZGVwl63wBgi8AEW6AqEVNbmVUWHV4EwL0HYX2qCUyWZKSrOTGZ8HmABAh9goXDEVE1nt3a3edXiC1pdDjCiDEkT9rXm5ae4ZRiG1SUBcYvAB0SJdn9QFe3dqurolp9JHohhKfta80pozQOiBoEPiDIR09SeLp/K27vV4PGziwdigiFpfFqijshKUUFKIq15QJQh8AFRrDsUVmV7tyraveoKhq0uBzhAWoJTkzKSVZKVomRa84CoReADYkRLd0C1XT7VdvoIf7BUhtulovQkFaUnKSMxwepyAAwCgQ+IQe3+oGo7fart8qndH7K6HMSBrKQEFaXtDXlp7GsLxBwCHxDjPMFQb/hr7mamL0ZObnKCCveFvJQEQh4Qywh8gI34QmHt6fKrptOnRi8TPjA0hqRxKW4VpiWpMD2JMXmAjRD4AJsKhiPa4/GrttOneo9fYV7qOAiHIeWlJKooLUkT0pKU6GKLM8COCHxAHAhHTDV4/WryBtTUHVCbL0jrX5xyGFJ2klt5KW6NS3YrN9ktp4MlVAC7I/ABcSgUiai5O6gmr19N3QG1+oKK8E5gSw5Dyklya1zK3pCXk0TAA+IRgQ+AwhFTLb5AbwtgS3eQLuAYRcADcDAEPgAHiJimWn3B3gDY3B1QiCbAqETAAzAYBD4AAzJNU23+kFp9AXX4Q3u/AiEF2PN3TLkMQ5lJLmUmJigrMUGZSQnKcLsIeAAGROADMGy+ULg3/HX4g73/pzXw8KUkOJXhdikj0aWspL0BLzXByR61AIaFwAdgxHmDIbXv1xLY4Q+qMxBiYshBpCY4lZHoUrrbpQy3S+mJCUp3u+Si1Q7ACCLwARgTpmmqKxhWdzCs7lBYvlBEvlBY3fv+9YUi8oXDtgmFDkNKcjmV7HIo2eU88P8Je//voMUOwBgg8AGIKv6eIBg+RCgMhRWOmAqbGtOZxA5DchqGnA5DTsOQy2Eo0fmf4LY3yPX83yG300H3K4CoQeADENMiprkvAJp7/2/uXWZm7//N3nC4//emuS/A7Qtvh/zXMOR07A16hDcAsYzABwAAYHNsmggAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsLn/D25dXXwu+BF0AAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
"# Count the number of people who work and don't work\n",
"work_counts = df['Do you currently work?'].value_counts()\n",
"\n",
@@ -138,21 +216,31 @@
"plt.figure(figsize=(8, 8))\n",
"plt.pie(work_counts, labels=work_counts.index, autopct='%1.1f%%', startangle=90, colors=['lightblue', 'lightcoral'])\n",
"plt.title('Distribution of People Who Work and Don\\'t Work')\n",
- "plt.show()\n"
+ "plt.show()"
],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.355506Z",
+ "start_time": "2024-02-23T01:12:49.112753Z"
+ }
},
- "id": "da1811cc63b41845"
+ "id": "da1811cc63b41845",
+ "execution_count": 6
},
{
"cell_type": "code",
"outputs": [],
"source": [],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2024-02-23T01:12:49.360434Z",
+ "start_time": "2024-02-23T01:12:49.357193Z"
+ }
},
- "id": "201db70188d3e778"
+ "id": "201db70188d3e778",
+ "execution_count": 6
},
{
"cell_type": "markdown",