1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
#include "FiniteDifferenceSolver.H"
#ifdef WARPX_DIM_RZ
// currently works only for 3D
#else
# include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H"
# include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H"
# include "FiniteDifferenceAlgorithms/FieldAccessorFunctors.H"
#endif
#include "MacroscopicProperties/MacroscopicProperties.H"
#include "Utils/CoarsenIO.H"
#include "Utils/WarpXAlgorithmSelection.H"
#include "Utils/WarpXUtil.H"
#include "WarpX.H"
#include <AMReX.H>
#include <AMReX_Array4.H>
#include <AMReX_Config.H>
#include <AMReX_Extension.H>
#include <AMReX_GpuContainers.H>
#include <AMReX_GpuControl.H>
#include <AMReX_GpuLaunch.H>
#include <AMReX_GpuQualifiers.H>
#include <AMReX_IndexType.H>
#include <AMReX_MFIter.H>
#include <AMReX_MultiFab.H>
#include <AMReX_REAL.H>
#include <AMReX_BaseFwd.H>
#include <array>
#include <memory>
using namespace amrex;
void FiniteDifferenceSolver::MacroscopicEvolveE (
std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Bfield,
std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Jfield,
amrex::Real const dt,
std::unique_ptr<MacroscopicProperties> const& macroscopic_properties)
{
// Select algorithm (The choice of algorithm is a runtime option,
// but we compile code for each algorithm, using templates)
#ifdef WARPX_DIM_RZ
amrex::ignore_unused(Efield, Bfield, Jfield, dt, macroscopic_properties);
amrex::Abort("currently macro E-push does not work for RZ");
#else
if (m_do_nodal) {
amrex::Abort(" macro E-push does not work for nodal ");
} else if (m_fdtd_algo == MaxwellSolverAlgo::Yee) {
if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) {
MacroscopicEvolveECartesian <CartesianYeeAlgorithm, LaxWendroffAlgo>
( Efield, Bfield, Jfield, dt, macroscopic_properties);
}
if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) {
MacroscopicEvolveECartesian <CartesianYeeAlgorithm, BackwardEulerAlgo>
( Efield, Bfield, Jfield, dt, macroscopic_properties);
}
} else if (m_fdtd_algo == MaxwellSolverAlgo::CKC) {
// Note : EvolveE is the same for CKC and Yee.
// In the templated Yee and CKC calls, the core operations for EvolveE is the same.
if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) {
MacroscopicEvolveECartesian <CartesianCKCAlgorithm, LaxWendroffAlgo>
( Efield, Bfield, Jfield, dt, macroscopic_properties);
} else if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) {
MacroscopicEvolveECartesian <CartesianCKCAlgorithm, BackwardEulerAlgo>
( Efield, Bfield, Jfield, dt, macroscopic_properties);
}
} else {
amrex::Abort("MacroscopicEvolveE: Unknown algorithm");
}
#endif
}
#ifndef WARPX_DIM_RZ
template<typename T_Algo, typename T_MacroAlgo>
void FiniteDifferenceSolver::MacroscopicEvolveECartesian (
std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Bfield,
std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Jfield,
amrex::Real const dt,
std::unique_ptr<MacroscopicProperties> const& macroscopic_properties)
{
amrex::MultiFab& sigma_mf = macroscopic_properties->getsigma_mf();
amrex::MultiFab& epsilon_mf = macroscopic_properties->getepsilon_mf();
amrex::MultiFab& mu_mf = macroscopic_properties->getmu_mf();
// Index type required for calling CoarsenIO::Interp to interpolate macroscopic
// properties from their respective staggering to the Ex, Ey, Ez locations
amrex::GpuArray<int, 3> const& sigma_stag = macroscopic_properties->sigma_IndexType;
amrex::GpuArray<int, 3> const& epsilon_stag = macroscopic_properties->epsilon_IndexType;
amrex::GpuArray<int, 3> const& macro_cr = macroscopic_properties->macro_cr_ratio;
amrex::GpuArray<int, 3> const& Ex_stag = macroscopic_properties->Ex_IndexType;
amrex::GpuArray<int, 3> const& Ey_stag = macroscopic_properties->Ey_IndexType;
amrex::GpuArray<int, 3> const& Ez_stag = macroscopic_properties->Ez_IndexType;
// Loop through the grids, and over the tiles within each grid
#ifdef AMREX_USE_OMP
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
#endif
for ( MFIter mfi(*Efield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) {
// Extract field data for this grid/tile
Array4<Real> const& Ex = Efield[0]->array(mfi);
Array4<Real> const& Ey = Efield[1]->array(mfi);
Array4<Real> const& Ez = Efield[2]->array(mfi);
Array4<Real> const& Bx = Bfield[0]->array(mfi);
Array4<Real> const& By = Bfield[1]->array(mfi);
Array4<Real> const& Bz = Bfield[2]->array(mfi);
Array4<Real> const& jx = Jfield[0]->array(mfi);
Array4<Real> const& jy = Jfield[1]->array(mfi);
Array4<Real> const& jz = Jfield[2]->array(mfi);
// material prop //
amrex::Array4<amrex::Real> const& sigma_arr = sigma_mf.array(mfi);
amrex::Array4<amrex::Real> const& eps_arr = epsilon_mf.array(mfi);
amrex::Array4<amrex::Real> const& mu_arr = mu_mf.array(mfi);
// Extract stencil coefficients
Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr();
int const n_coefs_x = m_stencil_coefs_x.size();
Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr();
int const n_coefs_y = m_stencil_coefs_y.size();
Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr();
int const n_coefs_z = m_stencil_coefs_z.size();
// This functor computes Hx = Bx/mu
// Note that mu is cell-centered here and will be interpolated/averaged
// to the location where the B-field and H-field are defined
FieldAccessorMacroscopic const Hx(Bx, mu_arr);
FieldAccessorMacroscopic const Hy(By, mu_arr);
FieldAccessorMacroscopic const Hz(Bz, mu_arr);
// Extract tileboxes for which to loop
Box const& tex = mfi.tilebox(Efield[0]->ixType().toIntVect());
Box const& tey = mfi.tilebox(Efield[1]->ixType().toIntVect());
Box const& tez = mfi.tilebox(Efield[2]->ixType().toIntVect());
// starting component to interpolate macro properties to Ex, Ey, Ez locations
const int scomp = 0;
// Loop over the cells and update the fields
amrex::ParallelFor(tex, tey, tez,
[=] AMREX_GPU_DEVICE (int i, int j, int k){
// Interpolate conductivity, sigma, to Ex position on the grid
amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag,
Ex_stag, macro_cr, i, j, k, scomp);
// Interpolated permittivity, epsilon, to Ex position on the grid
amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag,
Ex_stag, macro_cr, i, j, k, scomp);
amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt);
amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt);
Ex(i, j, k) = alpha * Ex(i, j, k)
+ beta * ( - T_Algo::DownwardDz(Hy, coefs_z, n_coefs_z, i, j, k,0)
+ T_Algo::DownwardDy(Hz, coefs_y, n_coefs_y, i, j, k,0)
) - beta * jx(i, j, k);
},
[=] AMREX_GPU_DEVICE (int i, int j, int k){
// Interpolate conductivity, sigma, to Ey position on the grid
amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag,
Ey_stag, macro_cr, i, j, k, scomp);
// Interpolated permittivity, epsilon, to Ey position on the grid
amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag,
Ey_stag, macro_cr, i, j, k, scomp);
amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt);
amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt);
Ey(i, j, k) = alpha * Ey(i, j, k)
+ beta * ( - T_Algo::DownwardDx(Hz, coefs_x, n_coefs_x, i, j, k,0)
+ T_Algo::DownwardDz(Hx, coefs_z, n_coefs_z, i, j, k,0)
) - beta * jy(i, j, k);
},
[=] AMREX_GPU_DEVICE (int i, int j, int k){
// Interpolate conductivity, sigma, to Ez position on the grid
amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag,
Ez_stag, macro_cr, i, j, k, scomp);
// Interpolated permittivity, epsilon, to Ez position on the grid
amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag,
Ez_stag, macro_cr, i, j, k, scomp);
amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt);
amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt);
Ez(i, j, k) = alpha * Ez(i, j, k)
+ beta * ( - T_Algo::DownwardDy(Hx, coefs_y, n_coefs_y, i, j, k,0)
+ T_Algo::DownwardDx(Hy, coefs_x, n_coefs_x, i, j, k,0)
) - beta * jz(i, j, k);
}
);
}
}
#endif // corresponds to ifndef WARPX_DIM_RZ
|